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ABSTRACT

* This thesis is concerned with the control of entry to queueing

systems. An M/M/1 model with a single class of customers and an

A e b P S

infinite time horizon studied by Naor (1969) provides the starting

oY
>

- fon e+ o e T o L

point for this work. Each customer receives a fixed reward for

service and pays a holding cost at a fixed rate per unit of time he
% spends in the system. Each customer may choose to join the system

or not. A self-optimizing customer decides whether or not to join
? by acting to maximize his own expected net benefit. A social

optimizing customer decides by acting to maximize the gain rate of

the system, the sum of the expected net benefits per unit time of all

arrivals. Socially optimal control of the model is provided by

L em
R R

3 establishing a balking point for the customers that is no greater

than the balking point a self-optimizing customer would determine.

Naor's approach is compared with the semi-Markov decision process

v
ke
P S

formulation of Yechiali (1971). The results for this first model il

R o

are extended to show that the gain rate can only increase as the

arrival rate of the customers increases while the social balking

o
-S5SSR Yy

point can ouly decrease as the arrival rate increases.

¢ 1
A semi-Markov approach is used to formulate an expanded model i

CI vy

with several classes of customers, each with its own reward and

y holding cost rate. Socially optimal control of this model is showm
to be provided by establishing a balking point for each class that
is no greater than the balking point a member of the class would
determine if he acted to maximize his own expected net benefit.
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A semi-Markov approach is also used to extend the several class
model to include Erlang service times. A heuristic solution technique
based on policy iteration and a solution technique using mixed integer
programming are presented.

The several class models arc applied to the problem of deter-

L
¢ mining an optimal policy for controlling the entry of commercial
alrcraft to the landing queue at the Greater Pittsburgh Internatiomal
f Airport. A socially optimal control policy is found aﬁd analyzed.
’ Finally, the semi-Markov approach is used to formulate three
other models:
1) A nonpreemptive priority model.
2) A class dependent service rate model.
3) A nonpreemptive priority model with class dependent
service rates.
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CHAPTER 1

r
{
1

£

L N

INTRODUCT1ON

Until quite recently, queueing theory has been rsed primarily
as a descriptive tool. In this mode, an existing or proposed queueing
system is "allowed to operate' and its behavior is described by one or j
i more measures such as expec'ad waiting time and expected queue length.
Currently, an increasing poriion of the queueing literature is being
devoted to the use of queueing theory to control ard optimize the

operation of a system. Here, queueing analyses are used to design a

= SRt o N e e

system or to develop an operating policy to control ite cperation so

that certain standards are met. For instance, a policy might be sought

to keep operesting costs below some upper bound while maximizing

e e

throughput of the queue. This more recent approach of designing or

controlling a queueing system based on an optimum operating policy is

adopted throughout this work. The policies sought are those which

maximize gain per unit time.1

é 1.1 Problem Statement

Suppose that customers from M homogeneous classes arrive at a
service facility with a single server. Th classes are homogeneous in
* in the scnse that each customer in a particular class, m, faces the

same cost structure at the service facility, namely, a reward R.m for

lWhile galn can be given a broad range of interpretation, it i=s

perhaps easiest to think of gain as financial gain, although the term
is not restricted to dollars.
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service and a cost Cm per unit time the customer spends in the system.

Suppose also that each customer may either join the system or not.

Ll SR R S,

Many economic viewpoints or objectives can be used to make the join or

balk decisions. Two viewpoints of interest are that of an individual

customer and that of the group of customers or society acting as a

whole.

e T T
T et N e B P g L

The first viewpcint gives rise to the individual optimum

2 A

problem in which each arriving customer makes his own decision whether

or not to join the system so that his own expected net benelit is

o e e k.

uaximized. Arriving customers are assumed to be able to determine the
state of the system, e.g., the number of customers in the gystem. A

customer's expected net benefit for joining when i customers are ia

the system is his reward Rm minus Cm times his expected time in the

system, given that 1 customers are in front of him. Unless otherwise

stated, the service discipline used in the models is first come, first
%1 served. A customer's net benefit for balking is zero.
"}

The other viewpoint produces the social optimum problem where

the decision of whether or not te allow an arrival to join the system

T T T

is made by a single decision maker who seeks to maximize tiae sum of the

A it ol o ik ARt Mg o

expected net benefits per unit time of all arriving customers. Omne way
' to view this decision wmaker i3 to think of him as an administrator who
collects all rewsrds and pays all the costs for the customers who use

the gystem, and then distributes the gains among all arrivals whether

or not they joined the system. While solution of th: social optimum

TR TR

problem is the major goal, the solution of the indiviival optimum

problem is also obtained and used to limit the search fer the solution

to the social optimum preblem.
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The solution to the social optimum problem 1s an optimum policy
| (i.e.. a join or balk decision for each class of customers, for each
poasible state of the system). Several assumptions about the arrival
distribution of the customers and the service time distribution of the
server are required to solve the problem in a straightforward mannmer.
These assumptions are noted in the outline of the dissertation and are
explained more fully in the various chapters.

For several of the models presented in this paper, optimal

controi of the entry of customers into the system is shown to be

provided by a set of balking points n=- (nl, Dys eevs nM) , where
class m joins if the state of the system is less than n . Tor all the
wmodels presented in this paper, the balking point for a self-optimizing
customer of class m is shown to be at least as large as that of

customexrs of class m acting in a socially optimal manner. Thus,

compared with socially optimal behavior, self-optimizing customers

tend to overcongest the system.

The particular application to which the results obtained will be
applied is the landing queue of an airport. It should be noted,
however, that applications as diverse as deciding on the number of

skiers to allow at a ski resort on a holiday and determining the

number of terminals allowed tu tie into a computer system can be molded
into queueing system entry control problems. 1ln the landing queue at
an airport, various types of commercial aircraft are the classes of
customers in the landing queue system. TFor each class, R.m is a measure
of the gain when a class m aircraft lands. Cm is the cost per unit
time of keeping an aircraft of class m in the landing queue, including

such costs as crew wages and fuel.
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Entry of aircraft into an airport's landing queue is currently
beirg controlled in several manners for safety reasons. At all major
airports, the air traffic coatrollers maintain an upper bound on the
size of the landing queue. If the queue is full, arriving aircraft
are denied entry into the landing queue and are kept under the command
of controllers in another air traffic sector. Also, at certain air-
ports designated as high density traffic airports, the Federal Aviation
Administration (FAA) limits the number of ingtrument flight rule (IFR)
operations (take offs and landings) per hour allowed during peak
traffic periods. These limits which are set by negotiation within the
industry are given in Table 1l.1. It is not necessary that aircraft in
flight which are not admitted to the landing queue be forced to land
elgewvhere. In practice, they could wait if they chcose. The model,
however, is useful in determining the capacity of an airport landing

queue from an economic viewpoint. Thus, the entry of aircraft into the
landing queue is controlled in the model for the purposes of defining
an economical workload for the airport or, more appropriately, an
economical airport for the workload. The former can be accomplished
by schedula modifications, the latter by airport design.

TABLE 1.1

FAA Limits for High Density Traffic Airports
IFR Operations Per Hour [FAA (1974)]

Airyport
Clags of Wash.
User JFK La Guardia Newark 0'Hare National
Air Carrier 70 43 40 115 40
Air Taxi 5 6 10 10 8
Other 6 10 10 12

—
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The models developed in the first few chapters of this paper will
be used to determine the capacity of the system (from an ecomnomic
viewpoint). Since the aircraft are divided into several classes, it
is possible that the capacity of the system may vary with the class of
an arrival since, for certain states of the system, the administrator
may admit members of some classes but not of others. When a decision
concerning the direction the development of a model is to take is made,
the appropriateness of the direction to the landing queue application

is the criterion on which the choice is based.

1.2 Outline of the Dissertation

Following this chapter, Chapter II presents a literature survey
of gelected works in the area of control of entry to queues. A few
works oun the control of the server in a queueing system and other
general topics that serve as background for this work are also included.
Two of these topics are air traffic control and the estimation of the
parameters of a probability distribution function. As indicated in the
flow diagram for this dissertationm, Figure 1.1, the flow of tﬁe
dissertation is not interrupted by skipping Chapter II.

Model I, the simplest model used in this study, is presented in
Chapter III. A single class of customers whose arrival forms a
Poisson stream to a single s2»rver with expomentially distributed
service times is modeled. Thus, this model is an M/M/1/n queueing
system where the capacity of the system, n, is the decision variable.
The capacity of the system, n, is also referred to as the balking
point >f the customers; that is, if n (or more) customers are in the

gystem, an arrival balks at the opportunity to join.
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Model I has been solved previously by Naor (1969) and Yechiali
(1971) for the individual and social optimum values of n. Naor
developed his results using algebra and the properties of the model,

while Yechiali developed his results by treating the problem as a

gemi-Markov decision process. Chapter III compares the work of the

two authors and extends it somewhat. A few sidelights such as tolls
(which both authors studied) are examined as one means of implementing
the solution to the social optimum problem. The toll charged to a
customer who joins the system alters his net benefit so that self-
optimizing customers find it desirable to join the system only when a

social optimizing administrator would have let them join.

In Chapter IV, M classes of customers are considered. Each
class m has its own reward for service Rm, cost per unit time in the
system Cm’ and mean arrival rate Am, but all have the same service

rate 4. The work of Naor (1969) and Yechiali (1971) is extended to

this model. 1In particular, the form of the optimal policy carries over

to this new model, Model II. The decision variable in this model is a

policy, a set of join or balk decisions for each class of customers,

for each possible state of the system. Recall that the number of

customers in the system 1is the state of the system. The balking point
of Model I now becomes a vector n of balking points for each class.
This implies that some classes of customers may receive preferential

treatment in the operation of the system. Policy iteration and linear

programming solution techniques are presented for the semi-Markov

decision process formulation of the problem.

The service time distribution of the M class model is generalized

from an exponential tn an Erlang distribution in Chapter V. This change
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allows more flexibility in modeling the sexrvice time distributinn of an
actual system. Again, the model is structured as a semi-Markov
decision process. Ome solution method developed, based on policy
iteration, is easy to implement but does not guarantee an optimal
solution. It assumes tha’ the optimal solution is again a vector of
balking points and performs a limited search for a good solution. A
second method permits an exhaustive search of all possible policies
through a mixed integer programming formulation.

As indicated in Figure 1.1, Chapters III through V cover the
three major models developed in this dissertation. Model II and the
Erlang model, Model III, are applied to a sample airport landing queue
problem in Chapter VI. Airline data, FAA data, and data taken at the
Greater Pittsburgh International Airport and Washington National
Airport are used in Chapter VI to estimate the parameters required for
the models. The models are then used to determine how entry to the
landing queue should be controlled to maximize the soclial optimum
objective function. The sensitivity of the results to the input
parameters is also examined.

In Chapter VII, three variations are developed for Model II.
First, the service discipline is changed from first come, first served
to a nonpreemptive priority service discipline. The second variation
expands the flexibilitv of the model by allowing different mean service
rates for each class or customers. The last variation combines the
first two.

A summary of the entire dissertation and the conclusions reached

is presented in Chapter VIII along with a list of potential uses for
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the models developed in the earlier chapters. Suggested areas for
future research are also presented.

There ere four appendices to this paper. A glossary of the
notations used in tlic paper is presented in Appendix A fo facilitate
reading the more mathematical sections of this dissertation. Appendix
B contains procfs of some of the work of Naor (1969) and an example
problem solved using his work. A brief introduction to semi-Markov
decision processas and policy iteration along with an example problem
illustrating the use of policy iteration comprise Appendix C.

Appendix D is a listing and user's guide for a computer program that

solves Models I, II, and III.
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CHAPTER II
LITERATURE SURVEY

This chapter is a survey of selected works that influenced the
writing of this paper. The works are divided into three areas: 1)
control of arrivals, 2) control of server, and 3) general. A short
sumnary of the papers in each group is presented in alphabetical

order by author's name.

2.1 Control of Arrivals

Balachandran and Schaefer (1975) examine an M/G/l queueing model
with several classes of customers. Each class has its own reward for
gervice, cost per unit time in the system, mean service vate, and mean
arrival rate which the class adjusts based on expected waiting time.

The individual optimum policy allows the service facility to be
dominated by a single class. The social optimum also admits only one
class, but it may not be the same class as the individual optimum.
Various techniques are explored for diversifying access to the facility.

Balachandran and Schaefer (1976) consider an M/M/1 queueing model
with K classes of customers where each class adjusts its own arrival
rate based on average wailting time in the queue. Each customer of
class 1 receives a reward 8 for service and loses \f for each unit of
time spend in the system. If A° 1s the optimal aggregate arrival rate,
the average waiting time is W = 1/(u - Ao) . The service facility is
used only by those classes for which 8y 4 vi/(u - A% . The authors

introduce admission prices to equalize the attractiveness of the

facility among the classes.
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Balachandran and Tilt (undated) consider decision making in
qucueing systems with customers given the choice of 1) joining, 2)
balking, or 3) choosing a priecrity through payment made on arrival.
Several models are examined from the standpoint of a noncooperative
n person game. One of the models treated yields an individual optimum
for the GI/M/s/n queue which is analogous to that obtained by Yechiali
(1972).

Edelson and Hildebrand (1975) reaxamine the work of Naor (1969)
and extend it to several classes of customers. However, the authors
are interested in the relationship between the social optimum and the
revenue maximizer's optimum. They firat examine conditions under which
the two are the same. Then, they examine a generalized model which
includes several'classes of customers, .each with its own reward and
cost par unit time in the system. They give a computational technique

for finding the expected number of each class of customers in the
gystem. In addition, they show that for the generalized ~ase, the
revenue maximizer's optimum balking point is not neceasarily leas than
the social optimum (which it was for Naor's model).

Emmons (1972) considers an M/M/s queueing system with the
following cost structure:

a) A fixed running cost rate.

b) An expected revenue per customer, r.

¢) An overtime running cost rate called K,

The system is run for a finite length of time with no customers
admitted after closing. A policy of admitting customers as a function
of number in the system and time to closing is sought which maximizes

the operator's total expected profit, The optimal policy admits
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customcrs only if the number in the system, £, is such that

fl(t) s i 3 fz(t) s where fl(t) and fz(t) are give:. If U is the

service rate and r 2 K/ (en), thenfz(t)- ©, g0 tuat customers are

always admitted when fl(t) or more are in the system. This rule can
\ be transformed into an optimal rejection time rule. For r < K/(ey),
‘ fz(c) ¥ wand the rule cannot be trsnsformed into am optimal rejection

time rule.

Harrison (1975) studies an M/G/l queueing system with K classes
of customers. Each class has its own arrival rate, reward for service,
holding cost, and service time distribution function. All arrivals are
allowed to join the queue, but an administrator decides at the comple-
tion of each service which class, if any, to adw . next to service.
The objective of the administrator is to maximize the sum of ihc dis-
counted net benefits of all'customers in the system. A nonpreemptive
priority discipline (that may ignore several classes) is shown to be
optimal.

Knudsen (1972) considers an M/M/s/n queueing system. He
generalizes the work of Naor (1969) to s servers and to a nonlinear
waiting cost function. The author shows that if the net benefit to
each arriving customer is a decreasing concave function of the number
in the system, then Naor's results hold; that is, the revenue maximiz-
er'; optimum balking point is less than or equal to the socilal optimum
which is in turn less than or equal to the individual optimum. The
author also discusses the shadow price aspect of the tolls charged to
customers to get them to act in a socially optimal mauner. Finally,

he discusses the difficulties of pricing resources in a stochastic

situation.
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Lippman and Stidham (1977) examine a queueing system with an
arrival rate A and a service rate ¥y that is a nondecreasing, concave,
bounded above function of i, the number in the system. Typically, the
sequence ui might arise from an M/M/s system where My = U * min(s,1i)
Associated with each customer accepted 1is a reward r which is a vandom
variable. An accepted customer joins the queue and incurs a waiting
cost of h per unit time until he departs. The system may either be
controlled by society as a whole or by the individual customers.
Contrul of the system is exercised to maximize expected discounted net
benefits over an infinite or finite horizon. The paper compares
individual and social optima and shows that regardless of system state,
remaining horizon, or discount rate, a customer left to his own devices
will enter the system whenever the social optimum calls for him .o
enter. In addition, the customer may enter when the social optimum
calls for him to balk. The authors claim that this discrepancy is
caused by the fallure of an individual customer to consider the short-
fall in benefits to later arriving customers caused by his joining the
queue, The paper also examines the behavior o¢ socially and individ-
ually optimal policies and returns as functions of i, n, and the
discount rate. Finally, the paper discusses tolls that should be
charged to get individuals to act in a socially optimal manner,

Littlechild (1974) considers an M/M/1l queueing system with
customers that have the same cost of wajting but different rewards for
service. He develops a toll to charge all customers to reduce the
arfival rate so that social benefit is maximized. In other words, the
reduction in waiting cost due to the smaller arrival rate more than

of fsets the loss in benefits of service to the customers as a whole.
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{ Miller (1969) examines an M/M/s/s queueing system with K
classes of customers. Each class has its own reward for service and
arrival rate, but all classes have the same service rate. When a
custoner arrives, a decision is made vhether or not to serve him. If

| . thr. decision is made not to serve, the customer departs; thus, there

1 is no queue and no preemption. The objective of the paper is to find

T T T P T . T g v

the admittance policy which maximizes the average value of rewards over
an infinite planning horizcn. When the system is in state j, J servers
are free and a policy such as serve customers of classes {1, Z, 3} may

be chosen. The problem is formulated as a semi-Markov process and

T o

policy iteration is used to solve for an optimal policy. The paper

also describes two heuristic methods for examining a generalized

gz A

problem that allows each class to have its own general service time

e

distribution.

Minc and Ohno (1971) consider an M/G/1l queueing system in which
the number of customers in the system 1is unavailable or too expensive
to maintain. Arriving customers are accepted during the time interval
(to, t'), starting time to rejection time, and rejected with compensa-

tion after time t'. The server runs at a cost rate r, during normal

o . R S

<
hours, (to, T), where T is closing time (note that to = t! : T). The

gerver runs at increased rate rl after T (overtime) and at reduced

rate ré if he becomes idle after t' (goes home). The paper finds the

=

rejection time that minimizes total expected cost.

Naor (1969) examines an M/M/1 queueing system in which customers

receive a reward R for service and pay a cost of C per unit time in the
system. The arrival rate is A and the service rate is 4. Each arrival

may choose either to join the system or not. Three types of objective
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functions are considered. In the first, the individual optimum

problem, each customer sceks to maximize his own expected net gain.

It is optimal to balk when n, customers are in the system, where

n, is tne greatest integer in (Ru/C). This is simply an M/M/l/ns
system. The second optimization considers the collective good of all
arrivals 8iven by the sum of their expected net benefits per unit time.
n S nB is now the maximum number allowed in the system. Reduction to

o
n, can be done either by administrative rule or by levying a toll om

o B e e R A A A e i e i)

entering cugtomers to reduce n, to n,- The third optimization maxi-
mizes the revenue of the toll collecting agency. n. : n s n, is the
maximum number allowed in the system. Thus, if left on its own, the

toll collecting agency levies tolls that are too high for the social

good .

=

Prabhu (1974) considers the problem of finding an optimal
stopping time for an M/G/l queueing system with a constant arrival

rate. The stopping time is chosen to maximize expected discounted

profit when the cost structure is as follows:
a) A revenue per unit time. ;

b) An operating cost per unit time in (O, to), where to is 3

the stopping time.
¢) An operating cost rate in (to, ®),
Finding the optimal rtopping time is based on an infinitesimal look-
ahead rule which can be described as follows. Suppose the system has

been operating to time t and a profic f£(t, wt) has been made, where wt

is the remaining workload. It 1s profitable to continue the operation

up to time t + h 1f E{f(t + h, Wt + h)} > f(t, wt).
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Stidham (1978) considers the problem of accepting or rejecting
arrivals at a GI/M/1 queueing system. The holding cost is convex in
the number of customers in the system and the reward for service is a
random variable. Finite and infinite horizom problems with and without
discounting are considered. A terminal reward or cost is allowed in
the finite horizon problems. The author shows that a socially copiimal
policy is less likely to accept a customer than an individually
optimal policy.

Stidham aad Prabhu (1974) examine the work that has been done in
control of queueing systems. The authors show how several of the works
are related and point out some generalizations that apply to most of
the papers. For instance, they note that most research has sought to
determine 1) when a stationmary policy is optimal, 2) its form, and
3) the value of its parameters.

Yechiall (1971) considers a GI/M/1l queueing system. The cost
structure includes a reward for service, a service charge for each
customer servad, a cost per unit time in the system, and a charge for
balking. The author finds an individual optimum that Is analogous to
that of Naor (1969). He treats the sccial coptimum problem as a semi-~
Markov decision procsss and shows that z control-limit rule iz
optimal; that is, the administrator will operate the queue a3z a finite
capacity queue. As Nuor did, he shows that the social optimum is less
than or equal to the individual optimuwm balking point. He then formu-
lates a linear program squivalent to the social optimum problem. The
author also considers the revenue maximizer's optimum.

Yechiali (1972) extends the results of Yechiali (197)) to a

G1/M/s queueing system. The author shows that the social optimum
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balking point is less than or equal to the individual optimum using

the same techniques as in his earlier paper.

2.2 Control of Server

Balachandran (1971) considers an M/G/l queueing sysiem with two
classes of arrivals. Class one customers are of higher priority than
class two customers. When N class one customers are in the queue, the
service of a class two customer is preempted until all N class one
customers are served. Service of the class two customer is then
regimed without loss of service accomplished. The value of N is sought
which minimizes a linear cost function involving the expected number of
cugstomers of each type and the expected preemption rate.

Crabill (1972) examines an M/M/l queueing system with a constant
érrival cate and a gservice rate ui where uie{ul, ooy uK}. A policy for
choosing the service rate as a function of queue length is sought to
minimize the long-run average expected cost rate of the queue. The
cost expression involves a customer isconvenience cost rate which
depends on the number in the system and a service cost rate which
depends 9n the gservice rate used. The optimal policy is shown to be a
set of k + ! aumbers which specify the range of values of number in the
systen for which each service rate is to be used.

Heyman (1968) considers an M/G/1l queueing system with the
following cost structure:

a) Dormant cost rate.

b) Running cost rate.

c) Start up cost.

d) Shut down cost.
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e) Holding cost rate.
The purpose of the paper is to find the policy thol :ainimizes the total
expected operating cost from among all possible policies of turning the
server off or on during the operating horizon. For the undiscounted
infinite horizon model, the optimal policy is shown to be either the
gerver is always running or the server is turned on when n customers
are in the system and off when the system is empty. For small interest
rates, the optimal discounted policy is approximately the same as the
optimal undiscounted policy. The author gives a recursive relation for
determining the optimal policy for a finite horizom.

Zacks and Yadin (1969) examine an M/M/1l queueing system with

arrival rate A and service rate U, where }i can be chosen from (0,u*).

- The following cost structure is considered:

a) H»ylding cost rate.

b) Cost of switching service rate.

c) Service cost rate.
The policy specifying service rates which minimizes discounted costs
over an infinite horizon is sought. The optimal control times are
shown to occur immedlately after a change in queue size. For the
special case of linear holding costs, switching costs that depend omnly
on the absolute value of the change in service rate, and convex service
cost rates with bounded derivatives, the optimal control policy 1is of
the form:

a) 1Increase u to n(x) if u < n(x).

b) No change if n(x) s U N ﬁfx).

c) Decrease Y to n(x) if u > n(x).
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x is the number in the systcw and n(x) and ﬁ(x) are service rates
asgociated with a given number, x, in the system.

Zacks and Yadin (1970) examine the special case of their earlier
paper in a little more detail. Some additional properties of the

optimal policy are established and a numerical example is provided.

2.3 General

Dear (1976) considers the problem of scheduling the landing of
aircraft. He constrains the capability of the scheduler so that he can
move an aircraft no more than a given number of positions from its
first-come first~served position. These constraints keep the schedule
feasible in that changes caused by a new arrival will be relatively
minor and any given aircraft will land reasonmably close to its first-
come first~served time. Yet the conntraints are loose euough to allow
considerable improvement in runway utilization over the first-come
first-served schedule.

Hadgson and Koehler (1978) examine the solution of Markov
decision processes by policy iteration when the systems require large
'numbers of states. The authors give a procedure for transforming
finite state, continuous time Markov or semi-Markov decision processes
so that an approximation algorithm by White and Odoni can be used.

Koopman (1972) considers queues of aircraft awaiting landing at
a single runway where there is a fixed maximum queue length. Arrivals
are assumed to form a time dependent Poisson process and service times
are either time dependent exponential random variables or time
dependent constants. A periodic solution is assumed for tne probability

of n aircraft in the system; that is, Pn(t + T) = Pn(t). Numerical
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results are given for several sets of values of the parameters. For

the cases run, the author notes that results such as expected number
in the system were remarkably insensitive to the form of the distribu-

tion assumed for service times.

White, Schmidt, and Bennett (1975) present in Chapter VII the
statistical techniques necessary for modeling the components of

queueing systems, Modeling the arrival and service distributions are

of major interest. The authors give the theory and examples for:

a) Selecting candidate distributions.

b) Determining numerical values for the parameters of the

distributions.

¢) Testing the hypothegis that the chosen distribution is

the true distribution.
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CHAPTER III

THE SINGLE CLASS MODEL

This chapter defines Model I, the single class of customers

-l la memr e Kiao,

model. The methods that Naor (1969) and Yechiali (1971) used to solve
for the social optimum are presented and their approaches are compared.
The model is also formulated as a linear program following Yechiali

(1971). Then, the effect of changing the arrival rate on the solution

= T
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is investigated. Finally, entry tolls are used to impose the social

optimum solution on individual customers.

3.1 Model I s
Model I has a single class of customers. The arrivals form a

Poisson stream with mean rate A, -The service times of the single

server are independent, identically distributed, exponential rando..

variables with mean 1/u. Thus, this model is an M/M/1l queueing model.

The following cost structure is imposed on the operation of the

queueing system:

a) Each customer served receives a reward of R dollars.

b) Each unit of time a customer spends in the system costs

him C dollars.

Suppose that e:ch arriving customer is given the choice of
joining the queue and receiving reward R and paying C per unit time
in the system or of not joining and not paying or receiving any money.
In this and the other models to be considered, customers are assumed to

decide by comparing the expected net gain associated with each decision
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and choosing the action with the larger gain. (In case of a tie, the
customer joins the queue.) This model is considered by Naor (1969)
and Yechiali (1971), although Yechiali allows a general arrival

distribution and a slightly more general cost structure.

3.2 Naor's Approach

After detailing the assumptions and structure of the model, Naor
argues that all reasongble strategies lead to a finite capacity queue.
The task remaining then 1s to determine the optimal capacity, n. Naor
first deals with determining n = n, under self-optimization where each
customer considers only his own expected net gain in deciding whether
or not to join the queue. The expected net gain for joining is
R - (1 + 1)C/u, where i is the number of customers the arrival finds
in the system. Joining the queue gserves the self-interest of a
customer if 1 is lecs than ns, where ns is such that

R - (n +1)C/u < 0 = R - nC/u .

This strategy leads to an M/M/l/ns queueing system where

a, = [Ru/C] . (3.1)

The brackets indicate that ng is the greatest integer in Ru/C. Thus,
the capacity of the queue or the balking point is n, for the self-

optimization problem.

If each customer or an administrator acts to maximize the sum
of the individual net benefits, the problem becomes the social optimum
problem. Considering an infinite horizon without discounting, Naor
gets up an expected overall net benefit rate function. In notation

based on Gross and Harris (1974), the expected net benefit rate is

as follows:
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g(n) = A'(n)R - CL(n) , (3.2)
where A'(n) and L(n) are, respectively, the effective arrival rate and

the expected number in the system when a maximum of n customers is

e i T S TP e AR " i S

allowed in the system. g(n) is the expected net benefit rate or
expected rate of gain when a maximum of n customers is allowed in the
system. The units of g(n) are dollars per unit time. Setting p = A/u 5
and using formulas for A'(n) and L (n) that are available in Gross and
Harris (1974) yields:

g(m) = AR{L - p™(L - 0)/(1 - o™} - cip/(1 - p) -

- (n + 1™/ - o™y : (3.3) 1

The administrator wants to choose n to maximize g(n). g(n) is
discretely unimodal in n (proof given in Appendix B), which implies

that a local maximum is a global maximum, Thué, the administrator

needs to find n = LI such that:

SR - o B s N

<
Ag(no +1)<0 = Ag(no) )

where Ag(n) = g(n) ~ g(n - 1) . Naor shows that n satisfies

[EE R

no 2
{“o(l =p) = p(l -p DI - p)

¢ n°+l 2 :

= RW/C < {(n +1(=-0p)~p(-p Y@ -, . ;

i

(3.4) {

For continuous variables Vg " Ru/C, and v, related by %
vo 2 E
v,@=p)=pQ-pHHA- " =v, (3.5) 4

s

Equation (3.4) leads to v, ] Ve and, since Vg increases with Vo

<
n, = [vol- n, = [vs] . (Proofs of these assertions also appear in

ST SRR

Appendix B.)
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Lippman and Stidham (1977) and others assert that n, S n, is
due to an individual optimizer's failure to consider the decrease in
benefits to later arriving customers caused by his joining the queue.
This type of effect is called an external economic effect. Considered
another way, the difference between the social optimum formulation and
the individual optimum formulation is that the social optimum formula-
tion includas arrival rate information. This information allows the
administrator to anticilpate expected benefits from customers who have
yat to arrive.

The queue capacity of the individual optimum problaem serves as
an upper bound on that of the social optimum problem, This bound is
ugeful in limiting the number of possible golutions thuat nead to be
consldered when approaching the problem as Yechiall does. The optimal
capacity n, of the soclial optimum problem is found by solving Equation
(3.5) for V! then setting n, - [vo]. Thus, Naor presents solutions to

both the individual and social optimum problaems.

3.3 Yaechiall's Approach

Although Yechiali {1971) considers a general interarrival time
distribution and a slightly more general cost structure than Model I,
this discussion of his results is couched in the terminology and form
of Model I. First, a few terms and concepts need to be dafined. N, is
the number of customers in the system at the instant of the nth arrival,
{An} is the sequence of successive decisions made by arriving customers,
where An = 0 1if the nth customer balks, and An = 1 if he joins the
queuas. {nn' An}, n=1, 2, ... is a semi-Markov decision process.

(See Appendix C for a brief introduction to semi-Markov decision

snk.
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processes.) H, = {nl, bys veey Ny? Am}(Ho = §) 1s the history of the
process through arrival m. A policy P for controlling the system is a
sat of decisions {D:(Hm_l, nm)}, m=1,2, ...; k=0, 1, Di(Hm_l, nm)
is interpreted as the probability of implementing decision k (k = 0 if
balk, 1 1f join) at time m given history Hm-l and present sta‘“e N, when
policy P 18 in effect.

Yechiall categorizes possible policies for controlling the
system in the following manner. Let Ct be the class of all policies
{Di(ﬂm_l, nm)}. Lat Cs’ a subclass of Ct' be the class of stationary
Markovian policies; that is, for wach arrival, only the state of the
system at the instant of the arrival is used as a basis for making the
decision of whather or not to join. Since, in Model I, the service
times are exponential and the horizon is infinite, only statiomary
Markovian policies nead to be coﬁsidered. For convenience, lat Di(l)
be the stationary probability that An = 1 given that n, = i, and
{1- Di(l)} = D, (0) be the stationary probability that A = 0 given
that n, = i, Sk is the class of all stationary policies such that
0 <D(1) ¥1 or 4% kand D, (1) = 0 for L > k. 5, is called the
class of stationary control-limit policies of order k. Let § denote
the class of stationary control-limit policies of infinite order; thus,
Pes 1f P = {D, (1): D,(1) >0, 1 =0, 1, ...}, Yechiali calls the union
of Sk and.S the class of control-limit policies, denoted by Ccz, which
is a subclags of Ce' Let Cd’ a 3ubclass of Ct’ be the class of
nonrandomized policies, thus, Pst implies Di(-,-) = 0 or l. The
class of deterministic control-limit rules, Cdcz’ is a subclass of Cd
and Cg . PRCy o 1f P = (D (1): Dy(1) = 1, 4 Z4; D (1) = 0, 1 > k)
for some k or P = {Di(l): Di(l) =1,1=0,1, ...}
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Now, consider the individual optimum problem. A policy, P, or
a set of joining probabilities {D§(~,-)} is sought that maximizes an
arrival's exvected net benefit. If the customer balks, his expected
net benefit is zero. Since the service times are exponential, the
expected time in the system for an arrival who finds i in the system
1s (1L + 1)/u. Thus, the expected net benefit for joining is

R~ (L + 1)C/W. A policy P is sought such that

o]
T ooE@ LR - (4 + )¢/ (3.6)
i 1" m-1
=0
is maximized., If n is such that R - nsC/u = 0, but R - (nS + 1)C/u <0,
p P >
then clearly P = {Dj(H ,,1) =1, 1 <n Dy(§ .,1) =0, 1 =n} is
the policy that maximizes Equation (3.6). The optimal policy is a

deterministic control-limit rule which is indeed the same policy that

Naor found.

[ ]
1

Determining the optimal policy for the social optimum problem is
more involved. The customers or administrators are assumed to act to
maximize the expected net benefit per unit time of the arrivals as a
whole. If g is the expected net beneflt rate, two policie: P and P'
are called g-equivalent if 8p ™ &pr1- The expected net gain rate of the

arrivals as a whole under policy P is:

A Di(l)X{R o+ D/l (3.7)
imo

Ep
where ¢z is the steady state or stationary probability that the system
is in state i 1if policy P 1is used. Dz(l) is the stationary probability
that customers are allowed to join under policy P when i customers are

in the system. The main difference between the social optimum formula~

tion and the individual optimum formulation is that the social optimum
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formulation includes informatioa about the stationary probabilities of

the various states. This information allows the administrator to

aﬁgm. . 15:‘3’:.-'}_- M x

2

Sz

anticipate expected benefits from customers who have yet to arrive.

2% e

Yechiali first establishes that for every PECS, there is a

!

g-equivalent rule P'Eccl' Thus, the search for the solution to the

social optimum problem can be restricted to control-limit policies.

T

eV oo b Oach ol H e ST i G i

He uses the fact that a nonrandomized policy is optimal for a finite
state space to show that a deterministic control~limit policy, Pecdcl’
is optimal for the finite state spac: social optimum problem. For the
infinite state space social optimum problem, he considers two cases,

an ergodic case and a nonergodic case. For the nonergodic case (A z u,

he argues that L(n) -+ ©» as n + «; thus, g(n) + ~ ® as n + o, (Here,

g(n) denotes the expected gain rate under any comntrol-limit policy

with a maximum of n customers in the system.) Since g(n) is finite
when n is finite, the finite state-space result can be used to show
that a finite deterministic control-limit policy 1is optimal for the

nonergodic case. In the ergodic case (A < u), Yechiali uses the limit

B R I A T e

of a sequence of finite state-space problems to show that again a
deterministic contrel-limit policy is optimal. He then uses arguments
based on the policy iteration algorithm of Howard (1960) to establish
that the social gontrol—limit, no - 1, is less than or equal to the
individual control-limit, n8 - 1. (Howard's policy iteration algorithm
is discussed in Appendix C.)

ii The solution to the social optimum problem can be found using
Howard's policy iteration algorithm. (The solution of a small problem

by policy iteration is given in Appendix C.) For each state i, only two

P P I D Ry

choices exist in the policy iteration procedure, either reject the
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customer, k = 0, or accept the customer, k = 1. For later models, the
range of alternatives will expand. When policy iteration is used to
solve for n in Yechiali's formulation, n_ serves as an upper bound on

the state space needed to describe the problem.

3.4 Comparison of Results

The two developments of ng» the balking point in the self-
optimum problem, given in Sections 3.2 and 3.3, lead to the same
expression for determining ns; namely, n_ = [Bu/c]. This section
establishes that the gain rate expressions for the social optimum
problem (and thus, the solutions) in Sections 3.2 and 3.3 are the same.
In fact, the expressions are also shown to be equivalent to a third
gain rato expression.

Naor's work determines the capacity of the system, n;, that
maximizes Equation (3.2). Yechiali's work determines a control-limit
policy that maximizes Equation (3.7). Control limits and system
capacities are related in the following manner: a control limit of j
leads to a capacity of j + 1. A third term used here, balking point
or forced balking point, is equivalent to the capacity of the system.

Let Naor's form of the expected social gain rate be called gy
From Equation (3.2), gN(n) = A\'(n)R - L(n)C. gY(n) is Yechiali's form
of the expected gain rate expression. In this form of the gain rate
expression, the expected net reward, i.e., the reward for service minus
the expected waiting cost {R = C(1 + 1)/u} is given to an arrival the
instant he joins the system. In the third form, gT(n), the waiting

costs are charged over the length of the custcomer's stay in the system

while his reward is given to him when he joins. g_(n) and g (n) are
T By

it v i R e . L . .
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4
developed using notation from Howard (1971) and hoth are shown to be g
aqusl to gN(n). i
gT(n) i1s developed first. n, the forced balking point, is the %
]
upper limit oo the number in the system. Lec Yy be the cost per unit -5
tine the gystem is in state i, where state i indicates that i customers %
A g
&, R are iu the system. Here, Yy is simply Ci. Let bii be the reward for a %
I N 1
b transition from state 41 to state J. 1
A ;
} R §wi+1l %
i . b " A
U; 13 |0 otherwise . |
%} Let ?ij.be the expected holding time in state i given that the next E
o 4
&l transition iu to state j. Pij is the probability of a transition from ¥
i - 1 - E
- state 4 to §. Ti - E P,,t,, is the expected walting time in state i. Q
ﬁﬁ 1t cy i defined to be the expected reward per occupancy of state i, %
5 1 then: i
T B - |
b‘; : li“ }‘ Pijb-yirij +b1j) u
2 3o ';
: |
3! o wO1T ;
%.\ cit, + Pi,i+la . ;
| ,1
§‘ Def ine 4, to be the expected reward per unit time in state {i. q
i |
b ‘ — — :
-ii q = ri/Ti & o0l + P1,i+1R/Ti . %
ﬁ,{ S nce n is the fovced balking point, a state dependent arrival rate ki
il
3;1 may he defined as £nllows: J
; i
X ‘ [A i <n t
o A e
3 0 i A n .

fince the interarrival and service time distributions are exponential,

i

the transitlon rate out of state i, Ti’ is given by:




" Uy +w1>0 .

Also, the probability of a transition from state 1 to i + 1 is

1 i=0

P Xi/(li +y) 0<ic<n

i,i+l
0 i 4 n

Thus, the expected reward rate in state i becomes

g = - Ci+ AiR .

Using results from Howard (1960), gT(n) can be written as
n

gp(n) = g_o 9,(a) q, ,

(3.8)

where ﬁl(n) is the steady state probability that i customers are in the
system given that the forced balking peint is n. (This equation is

similar to Equation (3.7) in Sectiou 3.3.) Thus,

n n
gr(n) = J B (@AR-C] @.(a) i
T i=o 1 L i=o 1
n-1
= X} 8, -CLa) .
i=o
n-1
) Qi(n) is the mean rate at which customers actually join the
i=o

system which is the effective arrival rate, A'(n). Thus,

gT(n) = A'(n)R -~ CL(n) = gN(n) .

e
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For gY(n), v = 0 and

R=-(1+ 1C/u j=1+1

bij " o otherwise
Thus,
n
r, = §-o Pijb1j - P1,1+1{R - (4 + 1)C/u}

The expected reward per unit time in state i is given by

——

q = /1y = 2 R-UH+ 1)c/u}/?i .
?
Ai and Ty for gY(n) are the same as they were for gT(n). Thus,

1{R - (1 + 1)c/u}/(1/xi) 1i=0
q b
i OO, + WHR= (4 + DC/MMAL/Oy +u} 150

Thus, for any i, q = AR - Ai(i + 1)C/u. As in Equation (3.8),

i
]
g, (m) = } @ (n)q,
b fmo i i
which becomes
n-1 n-1
gy(n) = IR} B,(m) -cC] (MWW ()L +1)
i=o i=0

For an M/M/1l/a queue, ¢i+1(n) = (A/u)ﬂi(n) 1£151+1=n, Thus,
n-1

gy(m) = A(mR-C] @, (@)U +1)

i=0
= A'(n)R - CL(n)

= gy(n)
and this establishes
Theorem 3.1: gN(n) = gY(n) - gT(n) .
(A result analogous to gy(n) = gT(n) for a discounted infinite horizon

problem is established in Stidham and Prabhu (1974).)
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3.5 Linear Programming Formulation of the Social Optimum Problem

Naor's formulation of the social optimum problem can be written
as

max
n

g(n) = A'(mR - CL(n)
which is a nonlinear programming problem with an integer valued
decision variable. However, this section shows that Yechiali's
formulation can be transformed into a linear programming problem.

The following linear programming formulation is similar to that
of Yechiali (1971) but is modified to maximize expected gain rate as in

<
Fox (1966). Since n, = o, only states 0 through n, can have positive

steady state probabilities. A policy P*ECs is sought such that

n n
s 1l s 1
max PP N P_P -
Spx = Pec_ {E_o E-oﬁini(k)ri(k)}/{i-oé-oﬁiDi(k)Ti(k)}.(3.9)

ﬂi is the steady state probability that i are in the system under
policy P. Dz(k) is the probability of choosing action k (k = 0 if
balk, 1 if join) in state i when policy P is used. ri(k) is the
expected reward per occupancy of state i if action k is chosen. ;;(k)
is the expected waiting time in state i when action k is chosen.
Equation (3.9) 1is just Equation (3.7) writtem in a slightly
different manner. Dz(l)A{R - (1 + 1)c/u} from Equation (3.7) is q, (1),
the expected gain per unit time in state i when customers are allowed
to join. However, qi(l) = ri(l)f?i(l) and qi(O) = 0, In Equation
(3.9), the ri(k) and qi(k) terms are summed separately, then divided,
as opposed to Equation (3.7) where qi(k) is formed first. In words,
Equation (3.9) is the expected gain per transition divided by the
expected time per transition which 1is indeed the expected gain per

unit time.
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The balance equations and normalizing equation which the steady
state probabilities {QzDi(k)} must satisfy are

. n

s 1 1
P P PP
E-o IZN 9,0, ()P, (k) - l{,-oﬂij(k) 0,3=0, c..hmn_ -1
(3.10)

and

s L P_P

jI I #pi) =1, (3.11)

=9 kmo
where 0 = ¢§ S1and o= D?(k) S, P,,(K) is the probability of a

transition from state i to j if action k is chosen. Note that Equation
(3.10) consists of only g equations since the redundant balance
equation for state n has been dropped from the formulation. Equations
(3.9) to (3.11) constitute a linear program with a fractional objective
function.

A linear program equivalent to Equations (3.9) to (3.1ll) but
without the fractional objective function will be developed using the
work of Fox (1966) and Charnes and Cooper (1962). First, let

xi(k) - ¢1Di(k), so that Equations (3.9) to (3.11l) become

n n

g 1 s 1
max P P o

{ x, (K, (k)}/{) x, ()T, (k)}
Pecs %-o g-oi 1 g-o £=o i 1
subject to

X (k)P (k) - / X (k) = 0, j - 0, s 0y n - 1

i=0 k=0 1 13 k=o 3 s

1
T ox(k) =1 (k) 20 .
L | 3

SRS EPRNECY T S SRy N e )

b SN IS R g ey )

£ Sk a4 a2 e T

el e Akl o

Py

SO ¥ b b marmale Pl i

PRCT T




34

>
Let yi(k) - txi(k), where t = 0, be chosen so that

n
S

A
i vy, (k) T,(k) = 1 .
i=0 kwo L 1

Multiplication of the objective function by t/t yields

ns 1l

max y ol vm o .
Pc ‘ i i
s imo k=0
After multiplication of Equations (3.10) and (3.11) by t, the linear

program becomes

n
max  y° % HORR)
A
PECS i=0 k-oi i
subject to

bt -2 -

y, (k) P, (k) =) vy, (k)=0,3=0, ..., n_~=1
img kwo i ij k=0 j 8
ns 1l P
I I vyl =t
j=o k=0
s 1 P .=
AR ACIACEEES
j=o k=o

> >
yi(k) 20, ta0 .

The last constraint is included to maintain the transformation. The
first n, constraints together with the last allow at most o, + 1 of

the yj(k)’s to be positive. The next to last constraint merely adjusts
the value of t. Since t is of no interest, it and the next to last
constraint can be dropped from the formulation. Thus, Equations (3.9)

to (3.11) can be written as the following equivalent linear program:
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n

s 1
max ]}y, (0r (K (3.12)
i=0 k=o
subject to
3 %
. v, ()P, (k) =) y. (k) =0,3=0, ..c.,n =1
i=0 k=o 1 13 k=0 3 S
(3.13)
ns 1 _
I I oyt = 1 (3.14)
j=o k=o
y, () 20 , (3.15)

The superscript P has been dropped since the optimal policy can be

recovered from the solution to Equations (3.12) to (3.15) through
P* !
D, (k) = vy,(k)/ y,(k), 1L =0, ..., n; k=0, 1.
i i o i s
(3.16)
*
Fox also shows that the Di (k) are either zero or one and at most

*
ng + 1 of them are one. ¢§ can be found from

T PAOTACH y () >0

i 0. otherwise

The linear program yilelds the social balking point through

n, = max{1i: yi(l) >0} +1 . (3.17)

3.6 g and n_as Functions of }

W

It seems reasonable to conjecture that the expected gain rate
can only increase as the arrival rate increases. This 1s now

established.
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Theorem 3.2: g is a nondecreasing function of A.

Proof: Let A' > A", Define g(P,A) to be the expected
gain rate under policy P when the arrival rate is A.

Let g*(\) denote the optimal expected gain rate when the
arrival rate is A. Since Yechiali (1971) shows that a
deterministic control-limit policy is optimal, let

v = {D (1): D (1) =1, 1 s n_ - 13 D,(1) =0, £>n -1}
be the optimal policy when the arrival rate is A". Let
P'eccz (the set of stationary control-limit policies) be
such that P' = {D (1): D, (1) = A"/ X', 15n -1

Di(l) =0,1i>n - 1}. Under policy P', an arrival who
finds less than n, in the system is allowed to join with
probability A"/ A' and is forced to balk with probability
1 - (A"/X'). Thus, P' is not a deterministic policy.
Since no penalty is assessed for rejecting a customer,
g(P', \') = g(P%, \"). Finally, since g*(A') = g(®',A"),

gk(A') = gh(A™).

Although policy iteration gives a method for determining the
social optimum, n,» for a given A, the following section presents a
method for determining the range of values of A over which a given n,
is optional.

Define {£(1)} to be the sequence of expected net rewards of
joining customers, where £(i) = R - C(i + 1)/u is the expected net
reward if 1 customers are in the system. In Yechiali's formulation,

an arriving customer receives his expected net reward upon entering
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the system. Thus, for Yechinli's formulation, the expected net gain

of the system per occupancy of state i is

£(1) 1i=0
N {{A /(h, + w)}E(L) 1>0 .
1/ Ay ’
Since
= . {L’Ai ’ i=0
1 /(A +1) 1>0

the expected reward per unit time in state i is

q = ri/'ri - Ai £(1) ,

where

Also, from Equation (3.8),

n

g(n) = §_0 () q

where the Y subscript has been dropped since the three equations for
gain rate were shown to be equal ip Theorem 3.1. Naor states that g(n)
is discretely unimodal in n. Thus, if Ag(n) = g(n) - g(n - 1), then n,
such that Ag(no +1) <0 S Ag(no) is optimal. Note that

n n-1

Og(n) = ] @, ()q (n) - ]

@,(n = Lyqy(a - 1) , (3.18)
10 i=o
where qi(n) denotes the expected gain rate in state 1 when the forced
balking point is n. Thus, qn(n) - qn-l(n ~ 1) = 0 since no entry is
allowed at the forced balking point.

qi(n) - qi(n - 1) = Af(1) , for { = 0, ..., n - 2;
(n) = Af(n - 1)
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ﬁ{ Substitution for qi(.) in Equation (3.18) yields 'é
: !
2 n=-2 X
: Ag(n) = §-o{¢*<n) -9, - DIEW) + 0 (MG - 1) }
: i
< > !
{ Since n =0, f(1) = 0. Also, Qn_l(n) > 0 and ¢1(n) - ¢i(n - 1) <0, i
F . Thus, Ag(n) 20 if é
{
‘ ~ > =2 !
[ 0, (WA - 1) = E B,(n - 1) = 8 (M@ . (3.19) i
' =0 1
| . i
I
]
i If p = A/U ¢ 1, then Equation (3.19) can be written as i
L i
| @ - )" e - 1/ - MYy 2 ;
'i u-2 i n i ol
| L@@ - ept/r - o™ = (1 =Pt/ = P I :
] i=o (3.20) :
After formatiun of a common denominator on the right-hand side and i
division by {(1 - p)/(1 - pn+l)} > 0, Equation (3,20) bacomes |
y? n=2 !

. > i
5 - 1) & {p(1 = /(L - o™} ) ey |
1 i=0 1
i .

. n H-«l i > i
| Since {(1 - p")/(L - p)} =) 0%, this leuds to Ag(n) = O if ;
: imo !
1
3 n-1 n-2 ;

fn-1 ] ot 3 pJotew), ad2 . (3.21) ;
imo i=o !
|
Now consider the case where p = 1, If p =1, ¢i(n) »w 1/(n + 1), so :
Equation (3.19) becomes 1
> n~2 : . :

f(n~-1)/(m+1) = 7 {l/n=-1/(n+ 1)}E(L) .
i=o ‘

After some algebra, this can be written as

N n-2
fn-1) & {JEW}n .
i=o
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Since this is the limit p + 1 of Equation (3.21), Equation (3.21)
can be used for all values of p.

Finding the range of A over which n = 1 requires finding A
such that Ag(1l) & 0, but Ag(2) < 0. If g(1) <0 (R < G/W), the
system is trivial since no customer ever enters. Thus, Ag(l) 4 0 for
all A since g(0) = 0. For Ag(2) < 0, Equation (3.21) is a linear
function of A, Finding the range of A over which n, - 2 requires
finding A such that Ag(?) 2 0 but Ag(3) < 0. Again, for Ag(2) N 0,
Equation (3.21) is a linear function of A, For Ag(3) < 0, Equation
(3.21) is a quadratic function of A. This pattern continues so that
finding A such that Ag(n + 1) a 0 or Ag(n + 1) < 0 requires finding
the roots of an nth degree polynomial. Usae of Equation (3.21) is
demonstrated with an example.

Suppose the reward for servicea of the members of a single class
of customers is R = 5, Also, suppose that the cost per unit time in
the system is C = 2, and that the service rate of the single server is
w3, {£(1)} = {R ~c(L+ 1)/u} = {13/3, 11/3, 3, 7/3, 5/3, 1,

1/3. -2/3, ...} . (Note that ng = 7.) TFirst, find the range of
values of A for which n = 1. Ag(1) 2 0 for all A. Ag(2) <0 if
from Equation (3.21)

Loy 9y
£(L)] p~ <o) pUECL) or 16.5 < A
i=0 i=0

Thus, n = 1 1f XA > 16.5. Now, find the range of A over which n, = 2.
Ag(2) = 0 4f A = 16.5. Ag(3) < O {f from Equation (3.21)
T 2
£(2) ) p >p ) PE(L) or =22 - 12X + 8L > 0
i=0 im0

Solution of the above for A yilelds Ag(3) < 0 if A > 4.035. Therefore,

F
4
;

5
3
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n, - 2 1f 4,035 < A s 16.5. Further use of Equation (3.21) yields
i o, = 31 2.1 < A = 4,035. Table 3.1 presents the results of the
policy iteration program of Appendix C for this example. These
results are given to confirm Equation (3.21), to illustrate Theorem

3.2, and to introduce the next idea.

TABLE 3.1

Policy Iteration Results for Various Values

N of A for a One Class Example with R = 5,
C=2, and u =3
f
; A n, g
[
F 0.1 7 0.431
1.0 5 4.003
2.1 : 4 6.944
2.2 3 7.128
4.02 3 8.993
4,05 2 9.011
16.4 2 10.998
16.6 1 11.010
. 100.00 1 12,621

The value of n s the forced balking point for the social
optimum problem, appears to decrease as the arrival rate increases

in Table 3.1. This result 1s established as Theorem 3.3.
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Theorem 3.3: n is a nonincreasing function of A. E
Proof: Since Naor proved that g is discretely unimodal %
in n, n_ is optimal if Ag(n + 1) <0 Sagn). Let %
no(K) denote the optimal forced balking point when the ig
N arrival rate is A. Let n = no(k"), where A" is a fixed é
value of A\. From Equation (3.21), %

Y

e S e S U

N g(n) a 0 if
n-1 n-2
>
fm-1) 3 et 3 o] oTE(D ,
i=o i=0

>
for n = 2, which can be written as

Ag(n) 20 if

E(n = 1)(L+p+ .or + 0Ly 2 p£C0) + pPED)

+ e+ 0@ -2

(3.22)

As )\ increases, p increases. Since {£(1)} decreases as

i increases, £(0) > £(1) > ... > £(n - 2) > f(n - 1).

Thus, as A increases, the right-hand side of Equation (3.22)

{ncreases faster than the left-hand side. This eventually

o Lt o T A e 4 e i< R B

leads to Ag(n) < 0 for A greater than or equal to some

Tt i

A' > A", Therefore, no(k') < no(k"). Since Ag(l) > 0 for

Y

all A, continuation of the above argument leads to the

TR

existence of A'"'such that no(k) = 1 for all A 2", Thus,

as A increases, no decreases until it becomes equal to oue. ¥
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Consider again the value of g as A increases in Table 3.1.
Theorem 3.2 established that indeed g can only increase as A increases.
However, note that g appears to approach a limit as A + <, From

Theorem 3.3, n, decreases as A increases, so that eventually n° - 1.

Ifn =1,
0

¢o(l) = /(U + A) and ﬂl(l) = A/(u+A) .
From Equation (3.8),

n
[o}

gn) = ;_o 8,(n)q (n)
S0

g(l) = WAE(O)/ (M + A)

Dividing numerator and denominator by A and then letting A -+ =, ylelds

iﬁﬂ g(1) = uf(0) . (3.23)

For this example,

o g(1) = 13

(8]
~

Tolls
Lippman and Stidham (1977) define an optimal congestion toll as
"an entrance fee that induces customers acting individually to behave
in a socially optimal way." Two types of optimal congestion tollsl
are considered. The first form of the toll is analogous to the tolls
of Naor (1969) and Yechiali (1971). The second form illustrates what
Lippman and Stidham (1977) call the monotonicity of a toll that is a

function of the number of customers in the system.,

lThe "tolls" developed here are actually payments for not
joining but have the same effect as charges made for joining.

.
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Suppose that the agssumptions of Model I are modified so that an
additional term, Q, is introduced into the cost structure, where 0 is
a fixed piyment to any custower who does not join the queue. [f czach
customer 1s allowed to decide whaether or uot to join the queue, :hen
@¢a¢h will maximjize his own expected net benefit. Expected net be.efit
for joining is still R -« (4 + 1)C/u L{f {1 customers are in the system,
but 18 now Q for not joining. Thus, joining serves the customer's
salf-interest 1f R «» (i + 1) /u a Q. This leads to an M/M/l/n;

queuaing system, where u; is such that
R = (n; + 1)C/u € Q 2 R - n;C/u .

Thus,
) o« [R~Qu/c]

which {4 just Equation (3.1) with R replaced by R - Q.

If an administrator decides who joins the queue and he wants to
impouve a limit of n from the original cost structure of Model I, he
can do so by changing the cost structure to include Q. Since
(R ~ Q)u/cC s Ru/C, n; : g The administrator needs to choose Q

such that n; =n . Thug, he must find Q such that

R -G, +1)/u<Q <R - Cn_/u (3.24)

#hich corresponds tu the tolls of Naor (1969) and Yechiali (1971).
Suppose now that the assumptions of Model I are modified so
that again a term is added to the cost structure. Any customer who
does not join the quuue is paid q¢<i, where q is a fixed amount of
money and 1 is the number of customers in the system. Again, assume

that each customer acts to maximize his own expected net tenefit. The
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expected net benefit for joining is still R - (i + 1)C/y; however, the
expected net benefit for not joining is g+i. Joining serves the self-
interest of the customers 1f R - (i + 1)C/u - q*i. This leads to an
M/M/l/n; queueing system, where

! = [UR + q)/(C + ug)] .

Again, If an administrator decides who joins the queue and he
wants tc impose the social limit from the cost structure of Model I,
he can do so by changing the cost structure to include q*i. Since
R-(1+ 1)C/u 2 R-(1L+ 1)C/u - q-i, ng : n;. The administrator

wants to find q such that n; =n. Such a value of q is determined by

{R - C(a_+ 1)}/ (un)) < q 5 (R - Ca)/{u(n, - 1)}.(3.25)

3.8 Conclusion

The simplest model of a controlled queue considered is Model I.
The semi-Markov decision process and linear programming formulations of
the model that Yechiali (1971) presents can easily be solved for n by
use of a policy iteration algorithm and a simplex algorithm, respec-
tively. Although Model I is not a particularly realistic representation
of a system such as an airport landing queue, it serves as a point of

departure in the development of more realistic models.
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CHAPTER IV

THE SEVERAL CLASS MODEL

This chapter defines Model II in which several classes of
customers are considered. The formulations of Hodel ! presented by
Naor (1969) and Yechiali (1971) are extended to Mcdel II. The form of
the optimal policy is shown to be a set of forced balking points, one
for each class of customers. The Naor type of formulation of Model II
is not easy to solve; however, the formulatiocn of this model as a
semi~Markov decision process following Yechiali (1971) lends itself to

solution by both policy iteration and linear programming.

4.1 Model Il

This model allows M classes of customers. The arrivals from
each class, m, form a Poisson stream with mean rate Am, where
m=1, 2, ..., M. The service times of the single server are inde-
pendent, identically distributed, exponential random variables with
mean 1/u. Like Model I, Model II is algo an M/M/1 queueing system but
now the customers come from M separate groups or classes with varying
costs and rewards. A member of class m receives a reward for service
of Rm and pays Cm per unit time he spends in the system. To avoid
trivialities, Rm is required to be greater than or equal to Cm/u for
all m. Again, two objective functions are considered, one for self-
optimizing customers and the other, the one of primary interest, for
customers acting ''socially." Each arrival or the administrator is

assumed to be able to determine the state of the system at the time
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of each arrival, where again the state of the system is the number of
customers in the system. An optimal policy is sought for each objec-
tive function; that is, a set of join or balk decisions is sought for
each class for each possible state of the system to maximize each
objective function.

A self-optimizing customer decides whether or not to join by
choosing the larger of the expected net benefit for joining and the
expected net benefit for not joining (which is zero). For a member of
class m arriving to find i customers ahead of him, the expected net
benefit of joining is R.m = (1 + l)Cm/u. For the social optimum
problem, an administrator decides whether or not a customer of class m
can join when i customers are ahead of him. The sum of the expected net
benefits per unit time of all arrivals of all classes is shown in
Section 4.5 to be maximized by a policy that imposes a vector E; of
forced balking points on the customers. E; = (nol, noz, ceas nOM),
where members of class m are allowed to join 1f the state of the system

is less than no but must balk otherwise.
m

4.2 Ind{ividual Optimum Problem

The solution of the individual optimum problem is investigated
from two points of view., The first development is an extension of the
Naor approach to Model I. If an arrival from class m finds i customers
ahead of him, his expected net benefit for joining is Rm - (1+ 1)Cm/u.
His expected time in the system is (1 + 1)/u because:

1) his expected service time and that of the { - 1

waiting customers ahead of him is 1/u, and
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2) the expected remaining service time of the customer
in service 1s 1/U since the service time distribution
1s memoryless.
Since the net benefit for balking is zero, joining the queue is in the
arrival's self-interest if the number of customers in the system is

less than ns , where ns is such that
m m

<
R_ - (nSm + 1)Cm/u <Q0= Rm - nsmcm/u .

Thus, self-optimizing customers of class m determine a balking point

nS such that
m

n, Rwe] m=l, 2, ..., M . (4.1)

(The brackets indicate the greatest integer function.) This is
analogous to Equation (3.1) for the single class model. Thus, for the
individual optimum problem, the M/M/1l queueing system becomes a finite

capacity system with the capacity given by ng, where
nk = {ns } . (4.2)

However, members of class m treat the system as 1f it had capacity n_ ;

m
that is, they balk when ng or more customers are in the system.
m

Equation (4.1) can also be developed by extending the Yechiali
approach to Model I. Since customers only use the state of the system
to decide whether or not to join the system,l only the subclass of

stationary Markovian policies, Cs’ needs to be examined for the optimal

lUsing the state of the system is the best a customer can do
since the transitions are memoryless and the horizon is infinite.

R Y I DI S
R 23 2 al

= - T e e mee
PO TINE TR E S KU 1 L AN SRR - 1 SR S

Rl

e i el S B sl i e i 5

A A e R cana




T T T

P S AP AT

48

policy. Thus, a policy P*eCS is sought such that P* yields

® M

max P -

PeC ) D (k) y k(DR - (1 + 1) /u} . (4.3)
s iwo m=1

Expression (4.3) represents the maximum expected gain per customer for
self-optimizing customers. Di(ﬁ) is the probability that action k is
chosen under policy P when the state of the system is 1. Action

X = (k,, k ooy kM) accepts class m 1if k.m = ] and rejects class m

1’ 2
if km = 0, A‘policy P is a set of join or balk decisions for each
class for every possible state of the system. The notation km(i) is
used to emphasize that the join or balk decision for class m is a
function of i, the state of the system. Again, Rm - (1 + l)Cm/u is
the expected net benefit to an arrival from class m for joining if 1

customers are ahead of him. Equation (4.3) can be maximized by

setting Di(ﬁ) = 1 for all i and all k and setting
1, if R - (1 +1)C_/u 20
k (1) = "
0, otherwise .
The same arguments that were used earlier in this section to develop

Equation (4.1) can now be used again to arrive at Equation (4.1).

km(i) can then be found from Equation (4.1) by setting

1, if 1t < n
S

m
k (1) =

0, otherwise, form=1, 2, ..., M .

(.3 Social Optimum Problem

Three different formulations of the social optimum problem are

presented in this section. As in Model I, an infinite time horizon
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without discounting is considered. The units of the objective function
for the socilal optimum problem are dollars per unit time. Thus, the
administrator wants to maximize the sum of the expected net benefits
per unit time of all arrivals. The formulation that extends Naor
(1969) 1is presented first.
? In Section 4.5, the optimal policy is shown to specify a vector
?‘ E; of forced balking points, E; = (nol, noz, . nOM), where class m
joins 1if the state of the system is less than n, and balks otherwise.
m

b The sum of the expected net benefits of all arrivals per unit time when

the forced balking points given by‘H are chosen is

gn) = E_l'\u'a(“)Rm - E-lc‘“Lm(n) . (4.4)

Here, K&(E} and Lm(Eb are, respectively, the effective arrival rate of
class m and the contribution of class m to the expected number of
customers in the system when forced balking points 1 are employed.
Equation (4.4) is Equation (3.2) extended to M classes of customers.
Analytic solution of Equation (4.4) for the optimal n is a formidable
task. (See Edelson and Hildebrand (1975) for the case M = 2.)
Although a heuristic search procedure could be used to find a good

solution to Equation (4.4), this will not be done here since the next

formulation of the problem readily lends itself to solutionm.

The second and third developments formulate the social optimum
problem as a semi-Markov decision process. This second formulation
extends the method of Yechiali (1971) for Model I. Here, the state of
the system is again the number of customers in the system. An arrival

who joins when 1 are in the system is given his expected net benefit
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for joining, Rm - (1 + l)Cm/u, upon entry into the system. The
decision to be made by the administrator for each state of the system
is which classes if any to admit. This decision 1s represented by

Koy eeey ), where class m is admitted if k = 1 and
m

1’ 72
rejected if km = 0. In Section 4.5, no s the forced social balking
point, is shown to be less than or equa? to noo» the self-optimizer's
balking point, for each class m. Thus, n: fra: Equation (4.2) serves
as a bound on the state space required for the semi-Markov formulation.
A policy P*ECS, the class of stationary Markovian policies, 1is sought

such that P%* yields

n*
max g, max s
=

PeC PeC X
8

p— pM
D,(k) @, ] k (DA R - {+1)C /u} .
s i=o0 m=]l

(4.5)

The units of Equation (4.5) are dollars per unit time, the same units
as Equation (4.4). Comparison of Equation (4.5) with Equation (4.3)
ylelds some insight into the difference between the social optimum
problem and the individual optimum problem for Model II. The main
difference is that the social optimum formulation given by Equation (4.5)
includes the steady state probability that the system is in state i,
¢§, when policy P is used. This information allows the administrator
to anticipate net benefits from future arrivals. The other differences
between Equations (4.5) and (4.3) are that ng bounds the state space in
Equation (4.5) and the inclusion ofkhlin Equation (4.5) makes its units
dollars per unit time rather than dollars per customer as in Equation
(4.3).

Equation (4.5) represents the optimum gain rate for a semi-Markov

decision process with a finite state space and a finite policy space.
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The policy space is finite since, at most, 2M actions are possible for
each of at most ng + 1 states. Derman (1962) shows that a nonrandomized
rule, Pecd, is optimal for such a process. Thus, Di(i} can be dropped
from Equation (4.5) since it will be one for the action given by the
optimal'f(i) and zero oth--wise. In other words, k(i) is the only

action chosen in state i under the optimal policy. Equation (4.5) then

bocomeas
n® M
?:2 nc gP - ;:2 ne zs ¢i X km(i))‘m{Rm -+ l)Cm/u} *
g d s d i=o m=l

(4.6)
Solution of Equation (4.6) by policy iteration and linear programming
is examined in Sections 4.6 and 4.7.

The third and final formulation of the social optimum problem
for Model II also formulates it as a semi-~Markov decision process and
extends the third form of the social optimum problem presented in
Chapter TII. The difference between this model and that which extends
Yechiali's formulation is that now a joining customer receives his
reward for service upon entering the system but pays his costs per
unit time in the system throughout his stay in the system. Since the
social optimum problem of Model II uses an infinite horizon and no
discounting, the timing of the payments does not affect the gain rate
of a given policy. The state of the system must indicate thé number
of each class of customers .in the system so that the cost rate can be
computed at all times. That is, the charges for a unit of time with
three customers of class one and two of class two in the system are

different than those for a unit of time with two of class one and three
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of class two. That still more information is needed is demonstrated
by the following example.

Let the number of classes be two and the state space be (i,)),
where (1,j) indicates that i customers of class one and j customers of
class two are in the system. If an arrival from class one occurs and
the customer joins, the state becomes (1 + 1,j); conversely, if an
arrival from class two occurs and the customer joins, the state
becomes (i, + 1). However, if a service occurs, the state of the
system is unknown since the state space does not indicate the class of
the customer in service. If the state space 1s amended to include the
class of the customer in service, it becomes (i,j,k), where k = 1 1if a
class one customer is in service and k = 2 if a class two customer is
in service. This definition of the state space atill does not contain
enough information to keep track of the number of each class of
customers in the system. For instance, suppose that the state of the
system is (2,2,1). Thus, two customers of each class are in the gystem
and one of the class one customers is in service. If a service occurs,
the state becomes (1,2,?). Since the service discipline is first come
first served and the state space does not indicate which customer is
first in line, the class of the customer moving into service 1s unknown.
The system occupation costs can be calculated for the present state,
but 1f another service occurs, the number of each class of customers
in the system is unknown. Thus, the state space must be expanded
further. In fact, the state space mugt indicate exactly what the queue
looks like. A state space like (ml, My eoey My «+.) 18 needed where

3

m, indicates the class of the customer in position j. For example,

3

state (1,2,1,1,2) indicates that a customer of class one is in service
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followed by a customer of class two, two of class one, and finally a
class two customer. Although this state space becomes large and

complicated when the number of customers in the system is large, the

i i R, R i T

social optimum problem for Model II can still be formulated in this

manner.

. Again, only the class of stationary Markovian policies needs to

be considered. For each state of the system, an action k =

(kl, kz, ceey kM) is sought to maximize the gain rate of the system.

ot AR STl A S e 2

As before, clags m is admitted if km = ] and must balk if km = Q.

2

Let m = (ml, Wys oevs mj, «¢s) indicate the state of the system, where

mJ gives the class of the cuastomer in position j. Also, let cm(E) be
the number of customers of class m present in state m. Note that only
the number of customers of each class in the system is required to

compute the occupation costs at any time, but the position of the

customers in the system is required to keep track of how these numbers

{ change as the system goes through various transition. n: from
Equation (4.2) still serves as a bound on the number of customers !

allowed in the system. If m' denotes the set of all,;'satisfying

M —. <
o r}:i-l o @ =nx (4.7)

i S i 328 * .

the objective function for this third formulation of the social

3

, optimum problem is :
max max P, 4P " - —

pec 8 ™ pec D(k) 9 ) {k@AR -0 @c} . +

- s __ m m m=1 [

mem' (4.8) 8

Since this is again a finite state~space, finite policy-space problem,

a deterministic policy is optimal according to the results of Derman
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(1962) and thus, Dz (k) can be eliminated from the formulation.
m
Equation (4.8) then becomes

M
max max P - —
g 7 87 {k @AR -0 (mc} .
PeCand P PsCand == T ogel O m m m m
(4.9)
The units of Equation (4.9) are dollars per unit time. This formula-
tion can be solved using either policy iteration or linear programming.
However, since all three formulations are shown to be equivalent in

the next section, this formulation will later be dropped because it is

more difficult to solve than the previous omne.

4.4 Equivalence of the Three Formulations

The equivalence of the two formulations of the individual
optimum problem has already been shown in Section 4.2. This section
establishes the equivalence of the three formulations of the social
optimum problem given in Section 4.3. As such, it extends the
equivalence demonstrated in Section 3.4 for the one class model. For
convenience, only two classes of customers are considered, although
the method used generalizes to any finite number of classes. The

expected gain rate, 8y for the Naor-type extension is, from Equation

(4.4),
gy(n) = Y AR - ) C,L,(m .
m=1 m=1

gY(E) denotes the gain rate for the Yechiali-type extension and gT(H)
denotes the gain rate for the third formulation. (Forced balking

points given by n = (nl, nz) correspond to control limits n, - 1l and
n, - 1.) gT(H) and gY(E) are developed using the notation of Howard

(1971) and both are shown to be equal to gN(E).
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gT(H) is developed first. Let yij be the cost per unit time in
state (i,j),l where (1,j) indicates that i customers of class one and

j of class two are in the system. Thus,

- -+ R
Vi3 1¢, + 16,
Let bij 114 be the reward for a transition from state (i,j) to state

(1',3'). Here,

Rl . if 1' = £ + 1, ' = }§
-J L ' =
bij,i'j' Rz , if i i, j j+1
o , otherwise .
\

Let Tij g4 be the expected holding time in state (i,3j) given the next
transition is to state (1i',j'). ?;j denotes the unconditlonal expected
waiting time in state (1,j). Let Am(i,j) be the mean arrival rate of
class m customers when the state of the system is (i,j). Here,
A, ifi+3j<n
NCH I { " °n

o , otherwise .

With this definition, ?gj can be found from

2
1/{} A(LHY , 1+ 3=0

m=1

-
]

1 )
1/{u+7 ALDY L 1+340

m=1

Also, the probability of a transition from state (i,3j) to state (1',j")

is

For notational convenience, all states, m, with o (m) = 1 and
(m) = j are combined into state (i,j).
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m'-l ?

: 1,9 /tu + z D), :

. E = . :;

g{ Pij,i'j' - 14+3>0;1' =41 +1, 3" =] X

- f

A, 1,3/ + 2 SCH PR 1

« m-l

1+3>0;4" =4, 4" =g+1 i

1 w/{u + Z A 1,0}, 1i+3>0 1" +j"=1+3 -1 }
: mel ®

' 0 . otherwise 4

|3

rij is the expected reward per occupancy of state (i,]). !j

3 r,, = J P (-y..T + b ) |
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Let qij denote the expected reward per unit time in state (1,)).

.
‘/ 1 . = - ” -
( 9454 T4/ 74y iy * Py, arnyg Bt Pay, 1(g40) 2}/T

| = = (e + 30, + A (4,8) Ry + (D) R,

. t -

' From Howard {(1560), gT(_r;) can be written as

gn(m) = 7 ¢, () q , (4.10)
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vhare Gij(§3 is the steady state probability that i customers of class

one and j customers of class two are in the system given that the
forced balking points are given hy n. Thus,

) ) ¢1j<“){" (1C; +4C,)) + 1. (L, R + 1, (1,3)R,}
i+j-n:

gT(E) -

-7 . ¢<n)(1c +4C) + AR a
i+j-n* 13 1™ §+j<n ¢ij (n)
°1
+ AR, ] aij(E) . (4.11)
1+1<n
2

Equatim (4.11) 48 just Equation (4.9) expressed in slightly different

notation. FEquation (4.1l) can be rewritten as

gTG) - cz %G’ - c22 ) 10 j(n) + A MR, + A <n)R
i+j-n* i+j-n:

- . ") - " o ey
ALl(n) Csz(n) + Ai(n)Rl + )\z(n)R2

2
- ) ALR ~}j CL,m = g ()
o=l ¥ L B N
Next, gY(H) is shown to be equivalent to gN(E). For this
formulation, the state space simply gives the number of customers in
the system. The cost per unit time in state 1 is Y - 0. The reward

for a transition from state 1 to § is
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"

2
R, = (14 1)C;/u wirh probability A (/{3 Am(i)}

me]

1

i,1+1 2
R, - (1 + 1)C_/u  with probability A_(1)/{] A_(1)}
2 2 2 g=1 B

.

and

by = 0 Fhi+1

Let ?i j be the expected holding time in state i given that the next
?

transition is to state j. Ti denotes the unconditional expected

waiting time in state 1. Let Xm(i) be the mean arrival rate of class m

when the state ¢f the system 1is 1.

A, if i <n
m (o]

A (1) = o
m

o , otherwise .

Ti is given by

2
1/{} A, 1=0
m=1

al
]

2
Viw+] A (D}, 140
m=1

The probability of a transition from state 1 to j is

(

1 . i=(C, j=1

2 2
D A /u+] a, 140, 5=14+1
=1 m=1

1.3

2
wl+] AW, 140, §=1-1
m=1

, otherwise

e T T T, e Tl e v i < b 1 e ot et s
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ﬁ
Thus, Ty the expected reward per occupancy of state i is 1
o* 3§
s 4
4 - - L |
j T,o= L By by B 3
5 i=o k
i
The expected reward per unit time in state i is given by g
[ 4y =TTt BT ;
b ) {
1 - -
1 xl(i){nl i+ 1)c1/u}
| 1

1 + 1, WIR, - (& + 1c,/ul .
5 1
Assume, without loss of generality, that n, =3, . Again, from 5
1 2 .
Howard (1960), i

*
! T “
| g, () = ) 9, q, .
' i=o :
3 o -1 3
A ) : A, { } ;1
, = L 9, (AR, - i+ 1)cllu
=0 ;1
n -1

(o]
2 .
+) Oi(E)xz{Rz - (1 + 1)c,/u}

fi i=0
1
i n -1 n, -1
. °r  _ 2
= AR 8. (n) + \.R @, (n)
1l li-o i 272 i i

F n -1
(e}

2
-C Q. /W + DO, ()
Loy i

n -1

o
1 _
- °1§ /W @ + 18, ()
=
2

e I R . OIS IR, M G~ <o SR




n -1

- cZ (A LM+ 1 ()

= M = ! T
Al(n)l?sl + Az(n)R2

n -1
0,
- 70 + 2 )}ch {(A +A)ME + DY, ()
i=o0
no -1
2 -
- {>\2/(>\1 + AZ)}c2 E_o {ag + Az)/u}(i + 1)@, (n)
no -1
1 -
- ¢ E-n O /W@ + 19, () . (4.12)
%2
n_ -1
°1
The termuPClz (Al/u)(i + 1)@, (n)} only appears if n z n_ + 1.
i-no 1 °1 %2
2

(@) = (A /u, )08, () if

177441771

For a finite capacity M/M/1 queue, §
2 i+1

<
0= i<n:; here, Ai =7 km(i)km, Hipp = Mo and n: = m:x{no }. Thus,
=1 m
n -1
5 . 202
(n) A' (n)R - {A /(X + A )}C 1+ 19, ()
By Ly m 14 1+1
n -1
0,
- DA+ Ak, ] (1 + 18, @
i-o
L -1
1
=% g.n @+ 1)@14-16) : (4.13)
o
2
n -l
°1
z (L + 1)01+1( = L(n), the expected number in the system. Thus,

i=0
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n -l n -1
02 ol
{fkll(kl + AZ)} § G+ DY, + ) 1+ 1)¢i+1(“) 1
=0 i-no 3
2 X
i is the contribution of class one to L(n) and é
b n_ -1
¢ o, _
D,/ +2)) ;_o 1+ 19, @

i is the contribution of class two to L(n). Finally,

B e el Sl L e e LB TS e S 8 DT

- 2 — - —
: . gy(n) = 7} AL@R - €Ly (a) - CL,(n)
Lf m=1
3 2 _— 2 —_—
- Z;-l AL @R~ E‘-l c L () .

- This establishes

v r
1 —— T e 1. e ¢

Theorem 4.1: gN(E) = gY(;) = g.l.(;) .

Since the three formulations of the social optimum problem are
equivalent, the easiest to solve formulation, gY(K) with its simple
state space and the availability of policy iteration and linear
programming solution techniques, is chosen for use in this paper.

1 The solution techniques for this problem are presented in Sections

4.6 and 4.7.

il e o e, i St TN, it M BT ki Sl

. 4.5 The Form of the Optimal Solution

For the social optimum problem with one class of customers,
Yechiali (1971) proves that a control-limit policy is optimal. Also,

both Naor (1969) and Yechiali (1971) prove that the forced balking

point, no, for the social optimum problem is less than or equal to the




balking point, s for the individual optimum problem. The purpose of
this section is to prove that these two properties of the optimal
solution carry over to Model II. The following lemma is established
first and then used to prove that a control-limit policy is optimal for

several classes of customers,

Lemma 4.1: For the social optimum problem, renaging is

' not optimal,.

Proof: Suppose customer A of class m arrives at time TA

J
b
.'5'4'
f:g!
A
e
!
3
%
3
A
3

and joins the system. Later, at time TD’ customer A
departs the system before he is served. The actions of
customer A affect no customer who arrived before him.

The contribution of customer A to the net gain of the

e sd B lodiaer 2 i - o

- - <
system over the iéterval (TA’ TD) is Cm(TD TA) 0,

his holding cost for the time he is in the system. If

s 1 P

no other customer arrives before customer A departs, his
actions have no effect on those customers arriving after
him. 1If other customers arrive during (T,, TD), the only
effect of customer A's temporary presence in the system
is to possibly keep a profitable customer from being
allowed to join the system. Thus, the contribution of

customer A to the system is negative when compared with

b A i oDl k. i 2 i Vo st

his not joining the system at all.

Theorem 4.2: A control-limit policy is optimal for each class.

Proof: Suppose that there exists a class m and a state i

- such that in the optimal policy km(i) = 1, but km(i -1) = 0;
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that is, the optimal policy for class m is not a control-

limit policy. The optimal gain rate is denoted by g*.

If ¢i = 0, then a policy which is the same as the optimal

except that km(i) = 0 also yields g*. The case ¢i # 0 is

considered next. Consider the following modification to

Model II. At the completion of a service, each customer

returns his expected net benefit plus his occupation costs
for the service just completed. The customers remain in

the order they arrived, but the administrator recomputes

the expected net benefit of each based on the number now
ahead of him and uses the given policy to decide whether

or not the customers can stay in the system. Because

there is no discounting, the gain rate of this system is
equivalent to that of Model II for the same policy. Since
the transitions are Markovian, all relevant information
about the future of the system is contained in the current
state of the system. (The state of the system must give

the position of every customer as in the third formulation.)
A customer of class m who had joined when 1 customers were
ahead of him would be forced to depart when the number of
customers ahead of him dropped to 1 - 1, since km(i -~ 1) = 0.
Thus, the customer would be forced to renege. By Lemma 4.1,
the given policy cannot be optimal for the modified system

or for Model II.

The next theorem establishes the relationship between the

balking point for a class in the iudividual optimum problem and

i
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the forced balking point for the same class in the social optimum

problem.

<
Theorem 4.3: For each class m, n,o=n

n m
Proof: First, the decision made by the administrator for
a given arrival does not affect the times of arrival of
any customer yet to arrive., As previously shownm, n_
satisfies .

R - (nsm +1)C_/u <0 S R_ - nsmcm/u X (4.14)
Suppose a customer, customer A, of class m arrives to find
the state of the system i a LI Let TA be the time of
arrival of customer A, and TB ge the time of arrival of
the next customer, customer B. In view of Equation (4.14),
let o < 0 be the expected net benefit of customer A joining
the system, If all expected costs and rewards are assigned
to a customer upon arrival, the contribution of the interval

(T TB) to the expected net gain is o < 0 if customer A is

A’
allowed to join. The decision regarding customer A does
not affect the expected net gain of customeis who arrived
before him, but it does affect the expected net gain of
those arriving after him, If customer A does not join, the
state of the system found by customer B and all others
after him is less than or equal to the state of the system
if customer A joins. Since fm(i) = Rm -1+ l)Cm/u, the

expected gain for a customer of class m joining when 1 are

in the system, is a strictly decreasing function of i, the

R T e _M-h,_:.,i_:tiwm*“m;ﬁmid

I R e g s
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contribution to the net expected gain of the interval

(T TC) for any T, > T, is at least as large when

B? B

customer A balks as when he joins. Thus, if 1 2 ng
n

forcing a customer of class m to balk yields a larger

net expected gain or gain rate than allowing him to

join.

Theorems 4.2 and 4.3 suggest a simple-minded approach to finding
the optimal policy. Since a control-limit policy is optimal for each

class and since the control limit is bounded by nS -1 for each class m,

m

a multidimensional search technique can be used to find the optimal
M

policy from among the I (n_ ) possible policies. In each of the next
m=l “m

two sections, a more efficient solution technique than the suggested

multidimensional search is described.

4.6 Policy Iteration Solution of the Social Optimum Problem

Equation (4.6) represents the optimum gain rate for a continuous
time, infinite horizon, undiscounted, semi-Markov decision process with
a finite state space. The policy iteration algorithm of Howard (1971)
(see Algorithm C.1 in Appendix C) will be applied to a small two class
problem to illustrate the method. A semi-Markov decision process is a
semi-Markov process over which a decision maker, here, the administra-
tor, has some control. The control arises from the ability at each
transition to change the probability distribution for the next transi-
tion of the process. Here, the control is carried out by choosing the
classes of customers that will be admitted to the system. Ignoring,

for the moment, the form of the optimal policy demonstrated in the

M
previous section, the administrator must choose from among 2

T i r e P e A Las
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alternatives at each transition. However, since the transitioms are
memoryless and since a steady-state exists and is of interest, the
decision as to which classes to admit only depends on the number of
customers in the system. The expected net benefit rate of the system
is influenced in two ways by these decisions:

1) The expected net benefit of the next transition depends

on the classes of customers allowed to join the queue.

2) The expected time before the next transition depends

on the classes of customers allowed to join the queue.

A solution to a two class example is now obtained by policy
iteration to illustrate the use of the technique. In this example,
class one customers receive a reward for service of R1 = 3 and pay
Cl = 4 for each unit of time spent in the system. The arrival rate
for class one 1is Al = 2 customers per unit time., Class two customers
recelve R2 = 2 for service and pay C2 = 3 for each unit of time spent
in the system, The arrival rate of class two customers is AZ = 4
customers per unit time. The single exponential server has a service
rate capability of u = 4 customers per unit time.

From Equation (4.1), nSl = 3 and n82 = 2, Thus, from Equation
(4.2), n; = 3, The set of all possible actions or alternatives con-
sists of {k: k = (0,0), (1,0), (0,1), or (1,1)}. To avoid a trivial
systenm, k(0) # (0,0); that is, if the system empties out, customers

must be allowed back into it. Also, Theorem 4.3 implies that

k(3) = (0,0) and k(2) = (k;,0).

P(0,0) is the matrix of transition probabilities for alternative

k = (0,0).
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v i
Lo i

o x
¢ To State 3
, ¥
3 i

0 1 2 3

‘
—
Y

r
!

g PO,0) = 0 |- - - -

From
State 2 0 1 0 0

310 0 1 0

. { J

The dashes indicate that action k = (0,0) cannot be chosen when the

5 g e

state of the system is O. For alternative (0,0), the next transition

G o i AT S o i 0 Kb ]

is sure to be the completion of a service. Transition matrices for the
other alternatives follow.

? f To State
0 1 2 3

;
t‘»‘ R ¢
! P1,00 = 0/0 1 0 0O ]

From 1| 0.67 0 0.33 0 ?

State 210 0.670  0.33

b ik

To State
: 1 2 3
i P(0,1) = 0|0 1 0 O W

i o

From 1{0.5 0 0.5 0 ;
State

.
W
!
[
|
L}
= ¢ BEILAR S

. _ o — . i oo g+ = e
S o S e e e e i R N F e e i s R i e L G s
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%

J To State 3

z

| o 1 2 3 ?

( } 4

P(1,1) = 0} O 1 0 0 4

| 104 0 06 0 g

; From 2 | - _ _ _ 3
State

L1} 3 - - - _

u J

a

o A a1 -

To see where the entries come from, consider the row corresponding to
state 1 of P(1,0). The transition rate from state 1 to 2 is given by
) A, = 2. The transition rate from state 1 to state 0 is given by the

1
service rate U = 4, Thus, the total rate out of state 1 is 6 and the

. N T

rate from state 1 to state 2 provides 0.33 of the total. Thus, the

f probability that the competing rates yield a transition from state 1

to state 2 is 0.33. Similarly, the probability that the competing
rates yleld g transition from state 1 to state 0 is 0.67,
Let b(0,0) be the matrix of expected rewards for the various

] transitions under alternative k = (0,0).

To State
01 2 3
é (0,00 = 0 |- - - = i
' .' From 1{0 0o 0 0
? State 2 0 0 0 0

e e e

310 0 0 0 J

Alternative (0,0) yields no benefits since no customers are allowed to

join the system. The expected rewards for the various transitions for

the other alternatives follow. 3
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To State %
o 1 2 3 j
f ) K|
b(1,0) = 0| O 2 0 0 &
,)!
From 1]0 0 1 0 ,%
) State 21 0 0 0 0 L
% h
) I
d \ ) ;
¥
To State
' o 1 2 3 i
¢ 1
r \

b(0,1) = 01} 0 1.25 0 0 :

4

From 1}0 0 0.5 0 i

State 2 | - - - - 3

E

| 3l - - - - |
i: \ / i
}

To State ;,

0 1 2 3 1

b(1,1) = 0 [ 0 1.5 0 0 q

: 10 0 0.670 '
From !
% State 2 _ _ _ - 1
3| - - - - ,
The entries bi,i+l of b(1,1) are found from !

. DO+ 2)HR, = @+ DC /b + A/ Oy + A )HR, = (L+1)C,/u} . '-.\

The cowponents of the vector of expected rewards per transition 4

for alternative k are found from

* !

r, (k) = §.o Pi’j(k) bi’j(k) . ;

S

.
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E For this example, the expected reward per transition vectors are
R S AN T S A
i r(0,0) = - > r(l,O) = 2 3 'E(O,l) - 1.25 Y r(l’l) - 1-5 0
0 0.33 0.25 0.4
0 0 - -
K 0 - - -
S,. \ J \ J \ J J
g The components of the vector of expected rewards per unit time
; in state 1 under alternative k are found from
& = /76
% Since T(k), the vector of expected waiting times under action ¥ s
iy
by required, it is given below for the various alternatives.
| 1,0 = [- ), T@0={0s ) ,
0.25 0.167
0.25 0.167
L 0.25 ) \ ind )
a ¢ 3 A 1 3
1(0,1) = | 0.25 y T(1,1) = | 0.167 .
0.125 0.1
\ B J | B J

Thus, the expected gain per unit time vectors are

e
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R Iy T

[ dow=[-) 504 50 -[s] . 5am-(9] .
| 0 2 2 4
: o ; - -
| ‘ | ° L) - ")
.
‘ A sequence of conutants, {vi}. for 4 =0, 404, n:. refarred to
by Howard (1971) as the relative value of the system starting out in
' ’ state 4, i¢ requived to wtart the policy idteration algorithm. As he
f ‘ supgarty, tuka v 0 for all L. Thesae values usre then used in the
! policy determination pov.ion of the algorithr which ia given by
?; Lyuation (4.18).
‘i Yor 4 =0, 1, «v4, n=.
'; | u¥
! ug () = B (g, ) + h/?ﬂ))t%jw by v, = vd) (413
The sautoy UYh) wivas the policy chowen for application h of the J
clgovithm,  For this axawple, |
aw . | (L,1) | lﬁ
(3,1) "i
. (L,0) :
©,0 i

it

Ty one wansa, the "alative value of starting out 4w state 1, A’ a)lowa

i e i i s

ghe edminiatvator to anticipate net beunefdies tyom future arvivale {n

that state, 1€ al) v, ave set equal to ewro, this foforamarlon {n lout

i

avd the adwinistreator can do no battey than the aplution to tha

indtvidual optiwam problem which {n plveu by H(L). ha thae policy
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iteration algorithm is applied again and again, better knowledge of the

vi’s results so the administrator can do better than the individual

optimum policy.

The gain rate and relative starting values associated with policy
E(l) are then computed ln the policy evaluation portion of the algorithm
given by Equation (4.16).

For 1=0, 1, ..., n:,

n*

— 8
87, {d, (MM, = r {d (h)}+ ]

n Pi.j{di(h) }vj . (4.16)

In Equation (4.16), g 1s the expected gain rate of the system under
policy d(h). Satting Vo to zero reducas the numper of unknowns in
Equation (4.16) to the n:mber of equations and ylelds a solution vector
v whose entries are values relative to Vow = 0. Solution of this

s
system of line: ' equation when policy ¢(l) is used yialds

g = 2.553 and {vi} « {2.67, 1.60, 0.64, 0} .

This new aet of vi's is used to begin the second application or
ataga of ~he policy iteration algorithw, For this new set, Equation

(4.15) ylelds

@(2) - ‘<1.1) .
(1,0)
(0.0)
(L,0)
L )

Evaluatlon of poliey d(2) givas

PR R N T TR T DA
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g = 3.692 and {vi} = {2.73, 1.85, 0.92, 0} .
This new set of vi's leads to termination of the algorithm because
d(3) = d(2). Since the maximum 1 for which kl(i) = 1 is one, n = 2.

1
Similarly, n = 1.
)

4.7 Linear Prcgramming Solution of the Social Optimum Problem

The formulation of the social optimum problem given by Equation
(4.6) is transformed into a linear programming problem in this section.
As in Section 3.5, the approaches of Yechiali (1971) and Fox (1966) are
combined to yield the formulation given here. The linear programming
formulation will be developed first. Then, the example of Section 4.6
will be set up as a linear program.

Since a, : n= for all m, only states O through n: can have

u
positive stoady state probabilities. A policy P*eci is sought such that

av 1 1 _ _
z“ ) cer QP DP(k) r, (k)
L kl_o kMrn 1 71 i
o = 32 B0 o wan

8.8 — e
o oF of (@) T, (@
iwo k.wo 0 i L
1 M
Equation (4,17) i@ just Equation (4.6) written in a alightly diffaereant
form, First, recull that in Equation (4.6), DZ(E) wae dropped bacausa
km(i) curried the same information. Couvarsely, km(i) 18 dropped lere

in favor of Dz(f). Second, in Kquation (4.6),

) 1 P - .
El_u e &M~° b, (k) xm{um -1+ 1)°m’“}

ie just qi(u), the expacted gain pur undt tiwma in state 1 when action k

18 chosun under policy PP Howaver, qi(E) - ri(f)/¥1(f). In Kquation

- - RIS .
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(4.17), the ri(-l;) and ?i('l:) terms are summed separately, then divided,
as opposed to Equation (4.6), where qi(f) is formed first. Equation
(4.17) 1is the expected gain per tramsitien divided by the expected time
per transition which is indeed the expected gain per unit time. The
balance equations and normalizing equation which the steady state

P —
probabilities {GiDi(k)} must satisfy are

n*
s 1 ¢ P P — - F LI X
PR A A ACR AN G E L E _°¢1°j‘k> “0 ,

i=o kl-o kM-o 1 W

for §j =0, 1, ....n;-l

£ D e senin Rt A e S im0 Y e B A P i M A b o

(4.18)
and
ng 1 1 L
R D) =1 (4.19)
j=o k=0 kh‘-o

where Gi 2 0 and Dz(E) 2 0. With the results of Fox (1966), as

R e AN < ol

[N gE VN B AP ISR W =)

)

demonstrated in Section 3.5, the linear program with fractional
objective function given by Equatiovns (4.17) through (4.1J) is

equivalent to the following linear program:

ng 11 1 ) B | ‘
subjact to ,Lﬂ
nd 1 1 3 ! | ~

. El_o.‘~ &M_Oyi(k)vlvj(k) - &l_o... I @0,

=
Gl T nistiady SN

Jm 00 v =1 (4.21) ’
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and 'g
R
ce o)t (k) o= 1 , (4.22) 4
imo k =0 k =0 1 1 ‘1
L M ;
where 5
= o af 0P T 2 q
| ¥, (k) ¢, D (k) =0 . (4.23) |
T ‘ Once Equations (4.20) to (4.23) are solved, Dz*(i) can be found ]
k g
) from ¥
| ) ot 1 _ |
1 it - oy @AY ) v,y (4.26) |
b ' k. =o k _mo !
i 1 M
L P* — P* — 1
3 Fox (1966) ohows that b, (k) = 0 or 1 and at most nX + 1 of the D, (k)
é are 1. Thus, Wz can be found from i
ﬁ ' .y T, ®  for y,() >0 (4.25) |
o L i L i : ;
i |
i The social balking point for eanch claus m can be found from g
1
g 4 : ) [ ! L ) A % LI > L}
% n"m w Lbmax {dry (ks Ky ey R Lk s e k) > 0) 1
[l (4.26) !
by !
i The optimel gualn rate of rie syotam is glveu Ly the maximum value of
: Xquation (4.20). ‘Thus, Bquotions (4.20) to (4.2%) constituve che ;
¥ ‘ formulation of an altarnate solurion tachnique to policy iteration for }
l the soclal optimum problem of Model 17.
{

The data for the example problem of Section 4.6 are vepaated

below L Tabla 4.1,

'
. . .
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TABLE 4.1

Two Class Example Problem

Class R C A
m m m

1 3 4 2

2 2 3 4

The single server provides exponentially distributed service times at a

mean rate capability of four customers per unit time. n: was found to
R L

be three. P(k), r(k), and T(k) which were also found in the previous

gaction are repeated below for couvenience.

o 1 2 3 ‘ o 1 2 3
PO,0 = 0= - - <) B0 =0(0 1 0 0 )
11 o o0 0 110670 0.330
20 1 0 0 210 0670 0.4
3{0 0 1 0] O T
0 2 4 23
pO,1) = 0lo0 1 0 o 1 pL,MD w00 1 0 o)
1105 0 0.8 0 104 0 06 0
7 I v I
- - -] S o - |
FO,0 W (=) ¥@0 e (2 ) Fo0 - [ L2s) T, e [ 1.8
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Using this information, the linear programming formulation in Equations

(4.20) to (4.23) for the oxanple problem is

AT ] e e

max 2y0(1,0) + 1.25y0(0.1) o l.Syo(l,l) + d.33y1(1,0)

s
-

+ 0.25yl(0,l) & O.Ayl(l,l)

subject to

IR AR AT T ]

B

yl(0,0) + 0.67y1(l,0) + O.Syl(O,l) + O.le(l,l) - yo(lqﬂ)

B

= ¥(07) =y (L1 = 0

S T e

y0C1.0) + y0(0.l) + yo(l.l) + y2(0.0) + 0.67y2(1,0)

ZSE T

" yl(o.o) - yl(l.o) - y0<0.1) - yu(l.l) w0

0.3391(1.0) + 0.5yl(0.1) + 0.6y3(l.1) + 9400,0)

0.5y0(l,0) + 0,23y0(0.1) + 0.167y0(191) + 0.23Vl(0.0>
* 0.167y1(1.0) + 0.12$y1(0,1) e 0.ly1(1.1)

’ + 0,25y, (0,0) + 0.167y,(1,0) + 0.28y,(0,0) w 1

"
o~

wha e yi(k) o 0,
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The optimal solution of this linear program is yo(l,l) = 1.85,
y (1,0) = 2.27, y,(0,0) = 0.92, and all other y () = 0.0, The
maximum value of the objective function is 3.692. From Equation (4.24),
Dg*(l,l) < Di* (1,0) = Dg*(0,0) = ] and all other Dz*(i) = 0.0. From
Bquacion (4.25), @p = 0.308, #, = 0.462, and go* = 0.23. Finally,

from Fquation (4.26), n. = 2 and n_ = 1,
%1 °

4.8 Conclusion

Model 1 has heen extended to allow for several classes of
customers. The characterdstics of the optimal policy are found to
carry aver to this extended model, Model II. A control-limit policy
for each clasg of customers manimizes the expected net beuefits per
unit time., Cowpared with the social optimum, self-optimizing customery
of euch closw tend to overcongest the system.

Of the three formulatiouns of the soclal optiwum problem that are
pregsentad, the one that aswsigne all axpected couts and rewards to u
cuotomer at the tiwe of hiyv entry Into Caysten 1w the waslest to
golve, Two solution techniques, policy dtersation and lineay programming,

ave prapentad and dllustrated,
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CHAPTFR V

ERLANG SERVICE TIMES

o R Fcinn i R A T e T

Now that the restriction on the number of classes of customers

has been eliminated (see Chapter IV), the assumption of exponential

Y
service times which 18 not very satisfying in the context of an alrport
landing queue will be relaxed. The Erlang density which allows more i
: K
' flexibility than the exponential in approximating an ailrport's service %

time density 1s introduced. Model III extends Model II to include

Erlang service times. Finally, the chapter explores two methods for

golving Model III, one through policy iteration, and the other through

_ oy

|
mixed integer programming, K
K

|

]

5.1 The Erlang Density Function

The following introduction Lo the Erlong density is adaptod from !

Gross and Harvis (1974). 'The BErlang density function 18 a subset of

the gamma density., Racall that

f(x) = (l/{T(u)Bu}){xuml axp(=%/B))  for 4,8 > 0 aud 0 = x < o

ay
1 the gamma density fuunction, '(u) = f xu_l axp (=x)dx and axp{.)
0

rupragents ¢ rvaisod to the powsr (). 1y #(x) 1is the dongity functlon 1

of u rvandom variable X, than B{X) = off and Var(X) = uﬂz. The Brlang
denwity 14 a gamma with o = hoand § » 1/ (hp), whora h = 1, 2, .., and i

> 0 1 a constunt, Thus, 1f 4 has an Brlang deasity, then, |

t) = L/ = DI oV gy, n om0

" ay 1
KA b e PR [N . 0 s Lol e x LT atadl, - Z o TERN ST RN
2N Coa Lol N T YE i VAP Y TR RS VULE 7V WITOT | ) i u : & 0 i 7t ok i
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Also, E{Z) = 1/u and Var(Z) = 1/(hu2). The graphs in Figure 5.1
demonstrate the increase in modeling flexibility of the Erlang density
over the exponential densicy function. (Note that if h = 1, the Erlang
density is an exponential density.) The effect on the Erlang distribu-
tion of increasing the value of h while holding the mean constant 1s to
reduce the variance of the distribution.

To extend Model II in a straightforward manner requires a service
time distribution with the Markovian or memoryless property. Of the
continucus distributions, only the erxponential is memoryless, so the
usefulness of the Erlang distribution way at first appear doubtful.
However, the mowent generating function of the sum of h independent,
identically distributed, exponential random variables with parameter 9
1 {8/(8 = )}, 'This can ba written as {hy/(hy - t)}h which is the
moment generating functlon of an Erlang random variable Z with
E(Z) = 1/y and Var(Z) = l/(huz). Thus, an Erlang random variable 2
with parsmeters h and U can be gonarated by the sum of h independent,
identically distributed, exponential randowm variables each with mewm
1/hj,  The technique used to introduce Brlanyg service times while
maintaindng the memoryless property is to artificially break a soervice
up into b independent, identically discributed, exponential phases.

Of course, only ous customer is allowed in service at any one tine.

The phuses are imposed for the convenience of mathawavienld tractability
and do not necessarily reflect any attributes of the actual saervice
proceds. To accommodats Vrlang service times, the state gpaca of the
mwodel 18 expanded to {ndicate tha numbar of phases of service in the

systaem, 1f thae evetem contulusw oue cudtomer, the state of the systam
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can be 1 to h. If the system contains two customers, the state can be
h+ 1 to 2h., In general, if the system contains i customers, the state

can be (1 - 1)h + 1 to ih.

-

Fise oy

5.2 One Class Example Problem

A simple problem is presented prior to the presentation of

Dot i el -

Model III to illustrate a potential problem that may arise so that the
' s problem can be avoided. Consider a single class of customers with the
! reward for service R = 3,5, the cost per unit time in the gystem C = 4, 3

v the arrival rate A = 2, and the mean service rate capability u = 4,

R

Suppose that an Erlang 2 distribution provides a close fit to the actual

service time distribution. Then, each service can be assumed to consist

of 2 independent exponential phases, each with mean time 1/(hu) = 1.8,
The individual optimum problem for this example 1s examined

first., Bach customer's expected service tiwe only depends on the mean

service rate which, in turn, does nnt depend on the form of the service
time distribution. lowever, the calculation used praeviously for the

expectad time g customer spends in the system depends on the memoryloess
property of the servico time distribution. Although this difficulty f

pracludes finding the balking point for Erlang distributed service

times ia terms of the number of customers in the system uas casily uag

bufore, the balking point can be found in terms of the number of phanaes
of service in the system aince the length of aach phase ol gervvice (s
an aexponantial random variabla, TLat n; ba the individual optimum
balking podnt in terms of number of phaser of survice in the dywtenm,

!

iy 1w such that

R - (.; + WG/ ) <0 . R - (n; - 1+ W/ . (5.1)
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Thus,

n! = [Rw/C] - (b - 1) , (5.2)

where the brackets represent the greatest integer function. For this
example, n; = 6, This policy implies that a self-optimizing srrival
will balk if he finds three customers in the system and the customer

in service is in the first phase of service. If three were in the
system and the customer in service were in the second phase of service,
the arrival would join the system. Since the phases of service are
purely artificial and indistinguishable, this policy cannot be
implemented., Thus, while the individual optimum solution may turn out
to be one that cun be implementad, the possibility exists that it may
not be implementable. This uncertainty casts doubt upon the uscfulness
of this formulation of the problem. The same difficulty can occur in
the solution to thae soclial optimum problem,

Solutdon of the example for tho soelal bulking podne in tarmy of
phanas of service by policy iteratdion or lineur programming leade to
the forced balking point occurring whan four phases of wervice are
prasent in the systom, Since the gervice tima distribution 1s Krlang
two, tha forced balking point occurs whan two cusgtomers ave In the
systam and the customer in sevvice Ls in his {irot phase of aaervica.
Again, sincue the phases ave not actually presunt in the sarvice itsalf,
thisg policy, though optimal for the modol, Lo wvanlistic and impowsible
to implamant,

This example amphasizens tha fact that an implementabla policy
must be one that doos not force an arvival or tha adminfatrator to

determing the servicae phasge of the customer {n suvvica, Recall that a
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policy is a set of join or balk decisions for each class of custowers
for each state of the system. The set of all possible policies, the
policy space, contains policies that cannot be implemented. The
policy space can be reduced to only those policiles that choosu the
gsame action (the game join or balk dacision for the cluswes) for uall
states representing thae prasance of tha sume number of customets.

Such policiuvs are implemuntubla bacausa thay do not raquire an arrival
or the administrator to ldentify the sarvice phase ol the customar in
survice. Implementabla policies will also be referved to re linkaeu
policies since the actions chosuan for all status vepraesdenting the

prasence of the same numbor of ¢agtomars muat ba tha sama.

5.3 Hodal 1L

Modal 111 hus M clawuas of customars, ‘The urvivals tov each
class wm form a Poleson stream with mean rata Xm. The uurviuu timaes of
the wingle sarvor arve independent, identleally diatributed, “rlang
vandow variables with moean 1/4 and vaviance l/(huz). el aryion
time is gaunovatad by tha sum of h iudepandent, {dentcically distributed,
axpongutial vandom variablas, anch with meau L/ (hp) . Tho state space
for Model Il ls expandud to indicate the numbey ol phares of warvicae
in tha gystam, DPhases (1 = 1)h 4 1 to {h voprasent the praguncu ot |
cugtomery, whare 4 « 1, 2, ,,, . The following coat dtructure ia
twposed on the oparation of tha quauaing syutant

1) Bach cuatomar of claguy m thut I8 savvad vecaelvas a

raward of K“ dollavs,

2)  Bach undt of time a class m cugtomer spundd {n the

gystem costs him Um dollave,
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To avoid triviality, Rh 2 Cm/u.

Again, for this model, each arriving customer is given the
choice of joining and being subjaected to the cost structure or balking
and not paying or receiving any money. Both the individual and social
optimum problems are considered. Since only the state of the system
upon arrival is used to decide whether or not to join the system,
onily the class of stationary Markovian policies, Cs’ is examined for
the optimum. To avoid coming up with a policy that cannot be imple-
mented, the decisions for all of the states corresponding to the
presence of the same number of customers must be identical. Therefore,
as in Model II, let Di(f) be the probability that decision k is chosen
under policy P when i customers are in the system. Decision
k = (kl, kz, ceny kM) accepts class m if km = 1 and rejects class m

if ¥k = 0.
m

5.4 The Individual Optimum Problem

The solution of the indivi-ual optimum problem will be investi~
gated first. The method of phases will be used to learn as much
information as possible about the solution to the problem. When this
method runs into difficulty, cther methods will be used to finally
determine {n8 } form=1, 2, ..., M.

First,mremove the restriction that all decisions made for the

states representing a single customer be identical. As in Sectiom 5.2,

n; » the optimal individual balking point for class m in terms of
m

1Again, using the state of the system is the best a customer
can do since the transitions are memoryless and the horizon is
infinite.

. TP Py 1
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phases is given by Equation (5.2) as

n;m = [Rpu/c) - -1 .

This balking point in terms of phases may translate into a balking
point in terms of customers that cannot be implemented. If this
happens, nsm, the individual balking point for class m in terms of
vie number of customers in the system, is either [(n; + h - 1)/h]

or [(n; +h - l)h] + 1. That is, n, is either the Tast complete
custome: represented by n; or one mo?e than that. This is really
enough information if the ?ndividual optimum is only used to hound

the state space for the social optimum problem. {(In Section 5.5, oo
the social balking point for class m is shown to be less than or equZl
to nsm.) The larger number of customers, [(n;m +h -l)/hJ + 1, can
serve as the bound for each class. The individual balkiiig point for
each class can be found, if desired, by different means.

One method of obtaining the individual balking points is an
extension of the approach used in Naor (1969) for Model I. A self-
optimizing customer will join the system if his expected net benefit
for joining is greater than zero which is his expected net benefit for
balking. Since Rm a Cm/u, [(n; + h - 1)/hJ a 1, so there must be at
least one customer in the syste: for an arrival to consider balking.
For each customer in the system but not in service, the expected
service time is 1/u. The difficulty with Erlang service times is that
the expected remaining service time for the customer in service is not
1/u since the Erlang distribution i{s not memoryless. Thus, the problem

is to find the expected remaining service time of the customer in

service. Since the arrivals for each class form a Poisson stream, an

e O A e
.
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arrival is equally likely to occur at any point during 1 .ezvi~g.

Following Kleinrock (1975), the expected remaining service time found

by an arbitrary arrival is

E(Remaining Service Time) = E(RST) = {E2(S) + Var(s)}/{2E(S)} ,
(5.3)
where S is a random variable representing the complete service time of
a custumer., For Erlang service times with E(S) = 1/u and

Var(S) = llhuz), Equation (5.3) becomes
E(RST) = (h + 1)/(2hy) .

The individual balking point in terms of customers can be found from
- L1y / s - -
R Cm{nsm/u + (R +1)/(2)} <0 3R c:m{(nSm 1)/u

+ (h + 1)/(2hp)} . (5.4)

This leads to

a, = [ /c_+ (h-1)/(m)] , (5.5)
m

where the brackets indicate the greatest integer function. The set of
individual balking points determined for the classes by Equation (5.5)
solves the individual optimum problem.

Equation (5.5) can also be developed using an extension of the
approach of Yechiali (1971) for Model I. Since each customer considers
only his own net benefit in deciding whether or not to join the system
and since all customers of a given class face the same cost structure,

each member of a class makes the same decision when a given number of

n A e e
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customers is in the system. Thus, a policy P*ecs is sought such that

P* yields
max ? P~ ¥
pec L Dy I k(DR - 1C /u - C E(RST)}
s i=o m=1
P M
+ Dy(k) 5-1 k (DR - cm/u) . (5.6)

The units of Equation (5.6) are dollars per customer so it maximizes
the expected gain per customer for self-optimizing customers. Equation
(5.6) is analogous to Equation (4.3) in the extension of Yechiali's
formulation to Model II. Again, Di(i) is the probability that decision
k is chosen under policy P when i customers are in the system.

kh(i) = () if class m balks when i customers are in the system, and
km(i) = 1 if class m joins when i are in the system. Equation (5.6)

can be maximized by sectting Di(ﬁ) = 1 for all 1 and all k and setting

>
1 if R, - iC_ /u - C_ E(RST) = 0
km(i) - { m m m

0 otherwise, form=1, 2, ..., M.

The arguments in the previous development can now be used to develop
Equation (5.5). Then,
1 if i <n
km(i) = { P

0 otherwise, form=1, 2, ..., M.

An interesting twist to the normal pattern of development used
in this paper provides numerical results to confirm Equation (5.5); in
particular, to demonstrate that n, can indeed be [(n; + h - 1)/h] + 1.

m m

As noted in Lippman and Stidham (1977), the difference between the

self-optimizer and the social vptimizer is that the self-optimizer

maiad .

2,
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fails to consider the decrease in benefits to later arriving customers
caused by his joining the queue. This effect iz called an external
economic effect. Although Lippman and Stidham investigate systems
like the M/M/s system, the external economic effect applies equally
well to Model III. As Xm +0forallm=1, 2, ..., M, the effect of
a given customer's decision to join on later arriving customers
declines since the expected interarrival time between customers is
large compared with 1/u, the expected service time. Thus, it seems
reasonable to assume that as km +0 forallm=1, 2, ..., M, n

m

approaches ns from below (the next section establishes no 2 ns for
m m m
all m). The twist is to find a social optimum problem for which

n, = [(n; +h - 1)/h] + 1, which implies that n_ 1s also
m

[(:; + h? 1)/h] + 1.
" Using the policy iteration method (see Section 5.5) for solving

the social optimum problem, a simple example was solved for which

n, = [(n; + h - l)/hJ + 1 for some m. In the example, a single

class of cﬁstomers is given a reward R = 2.99 for service and charged

C = 4 per unit time spent in the system. The service time distribution

is modeled as an Erlang 2 distribution with each phase of service

having a mean service time of 1/8. The arrival rate of the customers

is 0.4. From Equation (5.2),

[=))

a! = [Rw/c]- (-1 =

Thus,
[(n; +h-1)/h) = 3
and
(@l +n-1/m] +1 = 4.

e it e vt il 0 S

e —

[




SRR A It D T IR AL S " —r —
b peeacay

50

From Equation (5.5),

n, = [DR/CH -D/EW] = 4.

The policy ilteration method of Section 5.5 applied *o this problem
yields n, = 4 which implies that ng = 4 and confirms the result of

Equation (5.5).

5.5 Social Optimum Using Policy Iteration

A policy iteration approach to the social optimum problem is
cvonsidered next. With a few minor modifications, the proof of Theorem
4.3 can be adapted to establish that n, s LI for all m, for Model

1 m m

ITI.” Thus, a bound on the state space required for policy iteration

~can be determined from Equation (5.5) through

% o Dax
n* o {nsm} . (5.7)

A policy P*ECS, the class of stationary Markovian policies, is sought

such that P%* y!alds

Pecs gP = PSCS { §_1D1<kgi!§_lkm(i))\m{Rm - iCm/Ll - Cm E(RST)}

M

P,— P

+ Do\k)oo Z km(O))\m(Rm - Cm/u)} . (5.8)
m=1

The units of Equation (5.8) are dollars per unit time. As in Models I

and 1I, the main difference between the formulation of the individual

and social optimum problems is that the social optimum formulation

lSince the optimal policy has not been shown to be a control-
limit policy, n_ needs to be redefined as n = 1 + max{i: km(i) = 1}.

a will still beé referred to as a balking pu?ﬂt.
m

PEEESIRSERE NPT A S

(S Y




Soo

-4

e, g ns

91

includes information, here, ﬁi, that allows the administrator to
anticipate net benefits from customers who have yet to arrive.
According to Derman (1962), a nonrandomized rule Pecd maximizes
Equation (5.8). Thus, Di(ﬂb can be dropped from Equation (5.8) since
it will be oné fbr the decision chosen for each i and zero ott~rwise.

Equation (5.8) then becomes

nk

s M
max max ?
. 8, ™ {Z g ) k (D)X {R - 4iC /M - C_ E(RST)}
P(‘.CS(\Cd P PSCand {ml i n=1 m m m m

M
P
+ ¢o g-l km(O)Am(Rin - Cm/u)}. (5.9)

It should be obvious that if Equation (5.9) works for Erlang service
times, 1t works for any general service time distribution with a finite
mean and variance since E(RST) can be found from Equation (5.3).
However, Equation (5.9) cannot be solved by the techniques at hand
since in the formulation in Equation (5.9), the problem is not
represented as a semi~Markov (or Markov) decision process. To
demonstrate this, consider that if the system enters state i from
state 1 - 1, an arrival has ocacurred and ?;, the expectel waiting time
in state i, is E(RST), while if the system enters state i from state
i + 1, a service occurred and the expected waiting time in state 1 is
1/u, the expected service time. Unless the service times are expon-
entially distributed, E(RST) # 1/u. Thus, another approach is required
to solve the social optimum problem.

The inability tc solve Equation (5.9) using the techriques
developed leads back to the method of phases. The social optimum

problem without the restriction requiring the same decision be made for

o i i — &
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every state representing the presence of the same number of customers

can be written as

hn*
max
PEC, 8, = PSC 2 Dj(k)ﬁj Z K (DAR = (4 +0)C /() .

=0 m-l
(5.10)

Again, the results of Derman (1962) imply that Di(ib can be dropped

from the formulation since a nonrandomized rule 1s optimal so that

Equation (5.10) becomes

hn#*
s M
max ma
g 0 k (j)}\ {R -3+ h)c /(hw)} .
Pecgﬁcd P PsC ncd §_° 3 a-l

(5.11)

This is the same formulation that led to difficulties in Section 5.2;
that is, the optimal policy may be one that cannot be implemented
since it may require arrivals to identify the service phase of the
customer in service.

Since linking decisions places additional constraints on the
problem, the opiimal solution to the "linked" problem yields a gain
rate that is no greater than that found by solving Equation (5.11).

A simple way to find a good linked policy is to use the following

algorithm:

Algorithm 5.1:
a) Use policy iteration to solve Equation (5.11) for g
and n' for all m, where né is the optimal forced

m _ m
balking point in terms of phases of service in the

system.

b) If the optimal solution car be implemented, stop. If

not, go to Step (c).
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¢) For each class whose balking point occurs at the last
phase of a customer's service, fix n = [(né +h - 1)/h] .
For the other classes, n is either ?(né + E - 1)h]
or [(a! +h-1)/n] + 1" "

d) Among a?l possible sets generated from Step (c), find

the set {no }, m=1, 2, ..., M, of balking points that

yields the :aximum gain rate.
This procedure is fairly easy to implement, although it may require use
of the policy evaluation porcion of the policy iteration algorithm on
ZM policies in Step (d). Howeve:, it may not find the optimal solution
since it searches only a few linked policies in the region of the phase
optimum. In fact, the few policies examined are control-limit policies.
(Although the proof of Theorem 4.2 does not directly apply to Erlang
service times, it seems reasonable to assume that: the optimal policy

will again be a control~limit policy.) A more thorough search of the

linked policies lends itself to a mixed integer programming formulation.

5.6 Social Optimum Using Mixed Integer Programming

This section extends the phases of service formulation of Model

II1 so that all possible linked policies, policies that can be imple-
mented, are examined to determine the optimal policy. Recall that a
linked policy makes the same decision for all states that represent the
presence of the same number of customers.

Equation (5.11) represents the social optimum problem in terms
of phases of service in the system with no restriction on the decisions
made. Equation (5.11) can be formulated as a linear program similar to

that developed in Chapter IV [see Equations (4.20) to (4.23)].

H
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rd g
max =_
1=0 kl-o E&=o yi(k)ri(k)
subject to
hng 1 1 _ _ 1 1 _
I Lol oy -] ] oy =0,
i=o klao kM=o i kl-o A0
j=0,1, ..., (hng -1)
hag 1 1 L
I I ]l v =1
i=o0 kl'o k. =0

y, () =0 . (5.12)

hng bounds the total number of phases of service required for the social
optimum problem, where h is the number of phases per service and n; is
found from Equations (5.5) and (5.7). ri(E) is the expected reward per
occupancy of state i when decision k is chosen. ?;(ﬂ) is the expected
waiting time in state 1 1f action k is chosen. Pi,j(i) is the proba-
bility of a transition from state i to j if action k is chosen. yi(i)
can best be explained by observing that the stationary probability of
the system being in state i under policy P is ¢i = yi(ﬁ);;(i) for

yi(E) > 0. Thus, yi(i) is in essence a weighted probability that the
system is in state i under policy P. Policy P is a set of decisions
{k(D}, 1 =0, 1, ..., hn¥.

The only remaining task is to include in the formulation the
requirement that the decision for each class be the same for the states
of the system that represent the presence of the same number of
customers. In general, states (1 - 1)h + 1 to ih represent the

presence of i customers, where 1 = 1, 2, ..., n:. If the policy is

o b -
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.0 be one that can be implemented, the decisions k(j) = {kl(j),
kz(j), e kM(j)} made for states § = (i - 1)h + 1 to ih must be the
same. Ifi1=1.2, ..., ng -1, ZM actions are possible. [The number
of actions for some states could be reduced by using Equation {(5.5) to
set km(j) = 0 for all j = (1 - 1)h + 1 to 1h, where 1 A ng .] Thus,

m

ior a policy to be implementable, the actioms chosen for the states

“ ~pie~r~.iting each of {1 = 1, 2, ..., n: - 1 customers must be either

1.7 = Dh+1} =%k{({ -1Dh+ 2} =...=k{dh) = (0,0,...,0)

W1 -ih+1}=k{{ -1h+2}=... =h(h) = (1,0,...,0)

on

~T

KA -Dh+1} =%k{(L - 1)h + 2} = ... = k(1h) = (1,1,...,1)

These either/or constraints do not fit the usual form of linear
programming constraints. The method suggested in Taha (1971) will be
used to convert the either/or constra’nts to constraints that can be
used in a mixed integer program.

For i=1, 2, ..., n: -1, let

1 1if k{1 - Dh + 1} = ... = k(ih) = (1,0, ..,0)
z,(1,0,...,0) =
0 otherwise.

. 1 1f k{({ - Dh + V= ... = k(ih) = (1,1,...,1)
zi(l’l""’l) -
0 otherwise.
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Zi(0,0,...,O) is not needed since k must be 0 if k # (1,0,...,0),

and ..., and k # (1,1,...,1). The {Zi(ib} are binary variables which

‘ indicate whether or not action k is chosen when i customers are in the
system. If B is a large positive number, the either/or constraints are

equivalent to

ih < 3

. -BZ,(1,0,...,0) + ) y.(1,0,...,0) = 0 B
j=(i~1)h+l !

’ ih _ < 45
] -B{1 - 2,(1,0,...,0)} + ] N y. () =0 :
¢ j=(1-1)h+l k#(1,0,...,0) J 4
) 3

' ]

ih . j

-BZ,(1,1,...,1) + ) y.(1,1,...,1) =0 !

j=(1~-1)h+1 3 ;

ih Z — < V.

-1 -z, (1,1,...,1)} + ) L v, (k) =0 .

j=(1-Dh+l ®(1,1,...,1) 1 3

where 1 = 1, 2, ..., ng - 1. (5.13) ?

To illustrate the equivalence of Equation (5.13) to the either/or
constraints, consider that if action (1,0,...,0) is chosen for each
state from (i - 1)h + 1 to ih, then Zi(l,O,...,O) = 1 and all other
z2,(k) = 0. Thus,

. ih
-BZ,(1,0,...,0) + ) y.(1,0,...,0) = =B
j=(i-1)h+1
ih

N + 5 y.(1,0,...,0)
j=(1-1)h+1 3

A

0 and

[ A%

since B 1is a large positive number. Since yj(ib

_B{l - Zi(l,o,..-,O)} = 0,
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ih
-B{1 - 2,(1,0,...,00} + }
=U-DWL g eLLL0

-, <

only if all yj(x?), k #(1,0,...,0) and j = (1 - Dh + 1, ..., ih, are
zero. Since actina (1,0,...,0) is chosen for all states (i - 1)h + 1
t to ih, these y (k) are indeed zerc. The other constraints in Equation

3
(5.13) are also satisfied. Thus, choosing action k= (1,0,...,0) for

s & g

all states representing customer i satisfies Equation (5.13). Similar

T

argumeats can be made f.r any other action chosen for all the states

representing a single customer. If different actions are chosen for

the states representing a single customer, all Zi(E) are zero and at

least one of the

_ ih - <
-8z, (k) + ) y.(k) = 0
j=(i-1)h+1 3

Ty

constraints is violated. Thus, only those policies that choose the
same action for all states representing a single cus'omer satisfy

Equation (5.13).
Equation (5.13) allows at most h of the {yj(ﬁ)}, j= -1+ 1,

R RN

..., ihj all k, to be positive. Since yj(ib = ¢§/¥5(§) and ¢§ is a

probability,

N g @ = 1/(™® T.@)
3 K h

IR - e

Thus, the large positive number, B, required in Equation (5.12) is

EAS i e v oTabov ey

determined by

> min,— ,—
B o= n/({n,0N .

Equation (5.13) does not constrain the decision when zero or n:
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custowers are in the system. When n: customers are in the systen,

—_ <
action k = (0,0,...,0) must be chosen since n = n: for all m. Thus,
m

E{(ng -1h+1l} = ... = E(n;h) = (0,0,...,0) . (5.14)

Zero customers are in the system only if zero phases of service are in
the system, so only one state represents the condition of having zero
customers in the system. Thus, the problem of linking decisions does
not arise when zero customers are in the system. Equations (5.12) to
(5.14) constitute a mixed integer programming formulation of Model III.
The first example of Section 5.2 will be formulated as a mixed integer
program to illustrate the method.

A single class of customers receives a reward R = 3.5 for service
and is charged C = 4 for cvery unit of time spent in the system. The
mean arrival rate of the Poisson stream of custouuers is A = 2 customers
per unit time. The mean sarvice rate capability of the single server
is 4 = 4 customers per unit time. Suppvse that an Erlang two distribu-

tion provides a reasonable model ¢f the service time distribution.

From Equations (5.5) and (5.7),

n% = n_ = [WR/C + (h ~ 1)/(2h)] = 3 .

Thus, hn: = 6 is a bound on the nvaher of phases of service requived
for the social optimum problem. The mean service time of each paase

is 1/(hy) = 1/8. The transition probabilities are

Py g @=L 3= 1,2, .06 .

Py = 1

RN T 1 v Sy S
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and 0.2, §=i+2

P, (1 = 10.8, j=4<1

0o , otherwigse, { = 1, 2, ..., &4 .

(Reczll that decision O cannot be cnosen if 1 = 0, and decision 1
cannot be chosen if { = 5 or 6.) Calculation of the expected reward

per occupancy of a state yields

1, =0, 3=1,2, ..., 6

and

rj(l) = Pj,j+h(1){n <« (3 +h)Cc/(hu)}; 3=0,1, ..., &

The expected waiting times are

?3(0) =0.125, j=1,2, ..., 6

_ 0.5, =0 .
T,(1) =
] 0.1, 3=1,2,3,%4 .

Also, B = b/(ain{T,()}) = 2/0.1 = 20; let B = 25. With this informe-

tion, Equation (5.12) to (5.14) yield

max 2.Syo(1) + O.Ayl(l) + 0.3y2(1) + 0.2y3(1) + 0-1Y4(1)

subject to

yo(l) - 7;(0) - 0.8y,(1) =0

yl(o) + yl(l) yZ(O) - O.Byz(l) a0

72(0)'+ yz(l) yo(l) - y3(0) - 0.8y3(1) =0
y3(0) +y,Q1) - 0.2y1(1) - 5,00 - 0.8y4(1) = 0

ya(O) + 7,1

yS(O) - 0.2y3(1) - y6(0) -0

AL M
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0.5y0(1) + 0.125y1(0) + 0.1y1(l) + 0.125y2(0) + 0.1y2(1)
+ 0.125y3(0) + 0.ly3(l) + 0.125y4(0) + 0.ly6(1)
+ 0.125y5(0) + 0.125y6(0) = 1

/ <
1 | -252, (1) + yl(l) +73,(1) =0

"
o

<
-25{1 - Zl(l)} + yl(O) + y2<0)
<
-2522(1) + y3(1) + y4(1) =0

-25{1 - 2, (1)} + y,(@) + v, $

5.
[
o
-

“uere

Zl(l), Zz(l) =0 or 1; yo(l) a 0, yj(k) = 0 for =1, ..., 43

> >
k=0,1; ys(o) - 0, y6(0) = Q .

The optimal solution to this probiem is
yo(l) =1.12, yl(l) = 1.4, yz(l) = 1.75, y3(0) = 0.63,
ya(O) = 0,35, zl(l) =1 .

All other yj(k) and Zz(l) are 0. The optimal gain rate is g = 3.895.

This solution gives an optimal social balking point of n = 2.

. 5.7  Comclusion ;
{
R In this chapter, the model was generalized to provide an Erlang i

service distribution for the server. This was done because the flex-
ibility of the Erlang distribution will be needed in Chapter VI to !
dev2lop a realistic model of the actual service time distribution for ‘
an airport landing system. For the policy iteration solution procedure,

a control-limit solution was assumed; however, no restrictions were

ey




placed on the form of the solution found by mixed integer pro-
gramming.

The policy iteration procedure is a heuristic algorithm that
is easy to implement. On the other hand, the mixed integer
programming formulation allows identification of the optimal solution
but becomes cumbersome for large problems. The policy iteration
procedure requires the ipnversion of a matrix that has as many rows
and columns as there are states. The mixed integer program has an
equality constraint for each state. These problems may hamper the
solution of problems with several hundred states or morz; however,
the user of these methods shouid be able to alleviate such problems
by taking advantage of the sparseness of the matrix (constraints).
Since the policy iteration procedure is easy to implement, the user
should consider trying it first. 1If its results are unsatisfactory,

the user can then try mixed integer programming.
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CHAPTER VI

AIRPORT LANDING QUEUE APPLICATION

In this chapter, Models II and III ar: applied to airport
landing queues., Data from several sources are used to develop the
parameters of the models; however, the particular airport that is
modeled is the Greater Pittsburgh International Airport. The work of
Adler and Naor (1969) is used to help refine the results obtained for

the Pittsburgh Airport.

6.1 Customer Parameters

The purpose of this chapter is to determine how entry to the
landing queue should be controlled during peak traffic periods when a
single runway is being used for landings only. The use of a peak
traffic period to determine the control policy makes the benefits of a
control policy apparent. In light traffic, little or mo controi is
required, Thus, a peak traffic period gives the best indication of an
airport's capability to land aircraft effectively. Only commercial
jet aircraft are considered in this study, although other traffic uses
the Pittsburgh Airport. The other traffic generally uses another
runway during periods of heavy use of the Pittsburgh Airport so that
the models can be applied realistically to commercial jets only.

Commercial jet aircraft are divided into the following five

classes:
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1) Class One - Three-engine, wide body

2) Class Two - Four-engine, wide body

3) Class Three - Three-engine, regular body
4) Class Four - Four-engine, regular body
5) Class Five - Two-engine

The aircraft that make up the various classes are listed in Table 6.1.

TABLE 6.1

Alrcraft Categorized by Class

Class Manvfacturer Aircraft
i
E 1 Lockheed L-1011
| | McDonnell-Douglas DC-10
] 2 Boeing 747
3 Boeing 727 2
4 Boeing 707 _ 1
u McDonnell-Douglas DC-8 g
‘ 2 5 British Aircraft Corp. BAC~111 ?
é McDonnell-Douglas DC-9 ]
5

The mean arrival rate of each class, Am, is determined first.

The Transportation Systeam Center (1978) lists the hourly number of

landings on 4 August 1978 for the Pittsburgh Airport.

A peak number

of 32 landings occurred frum 1600-1700 hours and again from 1900-2000

hours. Thus, the overall mean arrival rate used in this study is 32

aircraft per hour. Rather than find class arrival rates by attempting

EI X ) N
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to determine which aircraft arrived during these periods, class arrival
rates are approximated by first deterwining the proportion of total
yearly passenger jet traffic at the Pittsburgh Airport that is repre~-
sented by each class. The wean arrival rate of each class during a
peak period is approximated by multiplying 32 bv the proportion of
yearly jet traffic that each class represents. The Civil Aeronautics
Board and Federal Aviation Administration (1978) list che total number
of departures (and thus, arrivals) from the Pittsburgh Airport for each

type of aircraft for a 1l2-month period ending 30 June 1978. The

percentage of the total number of commercial jet departures and the

computed mean arrival rate of each class are given in Table 6.2.

TABLE 6.2

Percentage of Yearly Jet Traffic Represented
by Each Class and Approximate Mean Arrival
Rate for Each Class in a Busy Period k

Y

Class §e:fT¥:2§iz Am (Aircraft/Hr) 3

|

1 2.1 0.672 !

b 2 0.2 0.064 g
’ 3 26.2 8.384 f
. 4 6.2 1.984 :
!

. 5 65.3 20.896 .

Noah et al. (1977) provide three estimates of the direct
operating cost to the airlines of each bour of flying time due to

delay. The costs included in the estimates are the costs of fuel,

K st e v e e i e i e
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airline crew, aircraft maintenance, and depreciation of the aircraft.
The estimates derived from three different sources [Ctvil Aeronautics
Board (CAB) (1975); Reck et al. (1975);and Rogers et al. (1975)] are
given in Table 6.3. For each class m, Cm is approximated by averaging
the three estimates given in Table 6.3. These approximations are shown
in Table 6.4.

The computation of Rm’ the reward for the service of an aircraft
of class m, is rather involved. R.m is found by multiplying the average
profit per passenger by the average number of passengers on a flight of
class m. The average profit per passenger is obtained by dividing the
sum of the profits of all domestic airlines for a year by the number of
passengers that flew in that year. 1974 figures are used because the
estimates of costs used for Cm were made in 1975 and thus were probably
based on 1974 data., Moles and Wimbush (1976) report the sum of the
profits of all domestic airlines in l§74 as $799,298,000 and list
189,733,000 as the number of passengers for that year. Thus, the
average profit per passenger is $4.21. Moles and Wimbush (1976) also
give the fraction of seating that was occupied, the passenger load
factor, as 0.555 for 1974. The average number of passengers on a
flight of class m is the average capacity of class m aircraft times
the lnad factor. The average capacity of aircraft of class m is
determined by a weighted average of the seating capacities of the
aircraft that make up the class. The weight for a given type of
aircraft in class m is the proportion of yearly flights into the
Pittsburgh Airport by class m aircraft that is accounted for by the
particular aircraft type. These proportions can be computed for the

Pittsburgh Airport from data given by the CAB and FAA (1978). The

L ——— s

Y - L

e R




106

TABLE 6.3

Estimates of Direct Operating Cost Per Hour
of Flight for Each Class of Aircraft

Class CAB ($/Hr) Reck ($/Hr) Rogers ($/Hr)

1 1729.20 1718.40 1620.00

2 2415.60 2295.60 1980.00

3 871.20 860.40 780.00 :
A

4 1112.40 1093.20 1080.00 [

5 694,80 671.40 G€9,00 i
i
4

TABLE 6.4

Cost Per Hour of Flight for Each Class ,

Class C, ($/Hr) ‘
i

1 1689.00 ;

2 2230.00 ;

3 837.00 |

4 1095.00 !

5 675,00 | |

ey , e e -
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maximum geating capacities of the various aircraft in the classes are
taken from Aviation Week (1977). The weights and seating capacities
are given in Table 6.5. The average capacity for each class can be
found by summing the products of the last two columns of Table 6.5.
These results are given in Table 6.6. For each class m, R.m is the
average profit per passenger ($4.21) times the load factor (0.555)
times the average capacity of an aircraft of the class (Table 6.6).

The values of Rm are give.. in Table 6.7.

6.2 Server Parameters

The first task that must be accomplished is to define a service.
In actual practice, the control of an aircraft approaching the
Pittsburgh Alrport begins with the Cleveland center, is then trans-
ferred to approach control, and is finally passed on to the control
tower. Each of these control sectors is really a group of air traffic
controllers. In turn, each controller may handle from one to about
six aircraft. During busy periods at the Pittsburgh Airport, most
commercial jet traffic is landed on Runway 28 cenﬁer, while departures
operate from Runway 28 right., If Runway 28 center and the airspace
near it are defined as the service facility, then a single server
model is appropriate.l Since FAA rules require a minimum separation
between aircraft, on approach and on the runway, the service time of
an aircraft is defined to be the period of time that the runway is

cleared for use by the aircraft. This definition is easiest to

1If an airport uses several runways for landings, a single
server model could still be used for a given runway if the class
arrival rates are adjusted so they are class arrival rates at the
particular runway rather than at the whole airport.
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TABLE 6.5
Seating Capacity and Within Class Weights
for the Aircraft in Each Class
» Class Aircraft Type Seating (maximum) Weight
t
1 DC-10 380 0.46
' L-1011 400 0.54
{ 2 Boeing 747 500 1.00
3 Boeing 727-100 131 0.65
Boeing 727-200 189 0.35
4 Boeing 707-100B 181 0.63
Boeing 707-300, 300B, :
300C ‘189 0.20
DC-8-20 176 0.01
DC-8-50, 62 189 0.01
DC-8-61 259 0.15 /
5 BAC-111 89 0.22 | ?g
DC-9-10 90 0.14 |
DC-9-30 115 0.53 E
DC-9-50 139 0.11 é
i
1
%




TABLE 6.6

Average Seating Capacity of Each Class

Class Average Capacity

L, 1 391

o 2 500
4

‘ 3 151

; 4 : 194

w

! 5 108

|

TABLE 6.7 1

Reward Per Flight for Each Ciass

Class R ($)

1 914

—— e -

.11
' 2 1168 j

%’ ‘ 3 353 |
i 4 453 |

5 ' 252
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implement when the airport is busy; then, the service time of Aircraft

B (which follows Aircraft A) is defined to be the time from Aircraft A's
crossing the end of the runway (or some other easily defined point) to
Aircraft B's crossing the same point. Thus, the service time distri-
bution is obtained from data taken during busy periods at the airport.
This service time distribution is assumed to apply whether or not the
airport is busy.

Data were taken at the Pittsburgh Airport on 8 June 1979 under
good weather conditions. Observations of the service times were made
at a radar scope similar to that used by the air traffic controllers.
The radar scope was used instead of direct visual observation for the
following reasons:

1) The information given on the scope included the

altitude of the aircraft which provided an alternate
definition of the end of a service; in this case,
1200 feet, the elevation of the runway, was used
rather than the end of the runway.

2) The information given on the scope included the type
of aircraft so that service time observations not
involving aircraft in the five classes (or aircraft
with similar landing speeds) could be dropped.

3) The pattern of aircraft on the scope facilitated the

identification of busy perdiods.
The service times which were found using a decimal minute stopwatch
are given in Table 6.8.
The sample mean of the Pittsburgh data is x = 1.81 minutes and

the sample standard deviation is s = 0.413 minutes. The parameters of
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TABIE 6.8
Obgerved Service Times (Pittsburgh)

Observation Time QObservation Time Observation Time

(Min) (Min) (Min)

' 1 2.00 24 1.68 46 1.34
‘ 2 2.15 25 1.20 47 1.53
3 1.76 26 2.39 48 2.34

' 4 2.09 27 2.27 49 2.50
: 5 2.65 28 1.61 50 1.94
6 2.48 29 1.57 51 1.79

7 1.94 30 2.33 52 1.32

8 2.10 31 1.69 53 1.18

9 2.01 32 1.55 54 2.57

10 1.56 33 1.41 55 1.87

11 2.18 34 1.48 56 1.93

12 1.33 ?5 1.87 57 1.79

13 1.10 36 2.58 . 58 1.94

14 2.02 37 1.73 59 1.32

15 1.93 38 1.80 60 1.57

16 2.42 39 2.05 61 1.62

17 1.85 40 1.27 62 1.63

18 1.55 41 1.41 63 1.32

19 1.98 42 1.48 64 1.41

' 20 2.87 43 1.87 65 1.48
21 2.27 44 1.56 66 1.16

l 22 1.70 &5 1.72 67 1.62

. 23 1.85
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the Erlang distribution, service rate U and Erlang number h, are
estimated by both the method of moments and the method of maximum
likelihood. [See White, Schmidt, and Bennett (1975).]

For the method of moments, the point estimates,ﬁ and g, of the

parameters of the Erlang distribution are found using Equations (6.1)

and (6.2).

ne 1/x (6.1)
and

ho=1/(s2 6% . (6.2)

For the data in Table 6.8, the estimates are § = 0.552 aircraft per
minute and ﬁ = 19.3. Since the unit of time used in the calculation
of the customer's parameters is an hour, the estimate of J needs to be
converted to il = 33.15 aircraft per hour. Since h has to be an integer,
19.3 is infeasible. This problem will be resolved shortly.

The point estimates, 1 and %, of the parameters of the Erlang
distribution using the method of maximum likeliliood are found using

Equations (6.3) and (6.4).

~

i = 1/x (6.2)
and

h = (I x,) u “exp{¥G)} (6.4)
j=1 1

where x, is observation i, n is the number of obsgervations, exp(.)

represents e raised to the power (.), and ¥(h) is given by

‘1'(;1) = ln(; - 0.5) + 1/{24(3 - o.5>2} . (6.5)

~

>
The approximation in Equation (6.5) is only valid if h =

2. Since h

appears on both sides of Equation (6.4), a few iterations using trial

1

.
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and error or bisection are required to solve for it. For the data in
Table 6.8, the estimates are ﬁ = 0,552 aircraft per minute or ﬁ = 33,15
aircraft per hour and ﬁ = 19.6.

Both methods yield estimates of the Erlang number that are
infeasible., White, Schmidt, and Bennett recommend choosing an integer
on either side of ; when this occurs. The estimate for the data in
Table 6.8 is thus either ﬁ =19 or ; = 20. .

The final step in fitting the data in Table 6.8 is to test the
hypothegis that the sample data could have come from an Erlang distri-
bution with the estimated parameters. A chi-square goodness of fit
test will be used. White, Schmidt, and Bennett suggest that maximum
likelihuod estimates be used for the parameters of the Erlang distribu-
tion tu gunrartee that the asymptotic distribution of the test
statistic is chi~square. The test is:

Hy: The datu come from an Erlamg (u,h) population.

le The data come from some other population.

2 K 2
Test Statistic: ¥~ = ] (0i - Ei) /Ei .
i=]1

Rejection Region: xz > Xi-a (d) .

k is the number of class intervals into which the data are divided.

Oi is the number of observations that fall in interval i, while Ei is

the expected number of observations that would fall in interval i under

HO.

of freedom of the test, d, is k - 1 minus the number of estimated

a is the level of significance of the test. The number of degrees

parameters of the aistribution. Since two parameters are estimated

for the Erlarng distribution, d 1is k - 3. White, Schmidt, and Bennett

. .“u 4t )
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recommend that:

1) The number of intervals be chosen such that 0i =5
and Ei Zs for all i.
2) The intervals be chosen so that the probabilities of
an observation falling in each are nearly equal under Ho.
For the data in Table 6.8, k was arbitrarily chosen to be six.
Since there are 67 observations, such a value of k should allow the

intervals to be chosen so that 0i and Ei are at lesst five for each.

A computer program was written to evaluate the integral of the Erlang

density so that the location of the intervals could be chosen to

satisfy both recommendations. The location of the intervals used and

the values of Oi and Ei when the hypothesized distribution is an Erlang

(u= 33.15, h = 19) distribution are given in Table 6.9. If a level of

significance & = 0.05 is used, the critical value, X? (3), is 7.81.

0.95
Since the value of the test statistic is 0.805 for this test, the

hypothesized distribution cannot be rejected. In addition, the

extremely small value of the test statistic indicates a very good fit.

TABLE 6.9

Observed and Expected Class Frequencies When an Erlang
(4 = 33.15, h = 19) Distribution Is Hypothesized

i s Bl e, G i Tt R,

Interval
0.0 1.385 1.585 1.735 1.905 2.205
to to to’ to to to
1.385 1.585 1.735 1.905 2.205 ®
Oi 10 13 9 9 14 12
Ei 10.02 10.92 9.72 10.77 14.36 11.21
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The location of the intervals used and the values of 0, and Ei

i
when the hypothesized distribution is an Erlang (p = 33.15, h = 20)
distribution are given in Table 6.10. The value of the test statistic
B for this data 1f 0.998. Again, if the level of significance is 0.05,
the hypothesized distribution cannot be rejected and a very good fit

¥ is indicated.

: TABLE 6.10

Observed and Expected Class Frequencies When an Erlang
(u = 33,15, h = 20) Distribution Is Hypothesized

~

? Interval
' 0.0 1.385 1.585 1.735 1.905 2.205
to to to to to to
1,385 1.585 1.735 1.905 2,205 ®
Oi 10 13 9 9 14 12
Ei 9.54 11.00 9.94 11.04 14.62 10.86

Thus, both 19 and 20 are reasonable estimates of the Erlang

number for the data in Table 6.8. Since the number of states needed

for policy iteratiomn is ngh + 1, there 1is an incentive to choose the
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smaller h., Recall that each step of the policy iteration algorithm or

the evaluation of each policy requires the inversion of a matrix that
is (n:h + 1)-square. In light of this requirement, it may be even more !

practical to use an estimate of h that 1s smaller than the maximum

likelihood estimate but which passes the goodness of fit test. While
in theory, this procedure may be hard to justify, it should not intro-

duce any appreciable errors. To illustrate, an Erlang (p = 33.15,

e e g A o e s — -
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h = 8) distribution yields xz = 8,65 which fails the chi-square test at
o = 0.05, but passes for o = 0.01. For the purpose of this chapter,
however, the Erlang (4 = 33.15, h = 19) distribution is chosen. When
Model II is used in this chapter, an exponential distribution with
U = 33,15 is assumed.

Data were also taken at the Washington National Airport on
10 July 1979, again when the weather was good. During the period of

obgervation, Runway 18 was being used for both arrivals and departures.

bl

Some of the observations of service time were made using a radar scope,
but the majority of them were made visually. The Wezshington data givea
in Table 6.11 is presented primarily to support the general applica-

bility of the Pittsburgh data. At a level of significance of 0.05, an

Erlang (u = 37.48, h = 16) distribution provides a good fit of the 34

obgervations taken.

6.3 Deterministic Service Time Model

ng o, the individual optimum balking point for class m (in terms
m
of customers), is found using Equation (5.5). The value of n is
m
given for each class, m, in Table 6.12. These results imply that for

RS AL A P ERP  T

the Erlang 19 model, n; is 18, so that the number of states required
is 343. The solution techniques based on policy iteration, Algzorithm
5.1, will reguire the inversion of a matrix that is 343 rows by 343 . i
columns. Since the matrix generated will be sparse, specilal techniques |
could be used to invert such a large matrix while maintaining a
reasonable degree of numerical precision. However, another approach

is pursued in this paper.
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TABLE 6.11
f Observed Service Times (Washington National)
L
3 Observation Time Observation Time Observation Time
1 3 (min) (Min) (Min)
, \
1 1.78 13 2.12 24 2.37
i
2 1.40 14 1.60 25 2.15
! 3 1.63 15 1.12 26 1.77
4 1.60 16 1.52 27 1.22
5 1.95 17 1.12 28 2.18
6 1.70 18 1.48 29 2.32
7 1.66 19 2.05 30 1.62
8 1.15 20 0.95 3l 1.16
;
9 1.30 21 1.97 32 1.82 ,
10 1.15 22 1.57 33 1.29
A
11 1.30 23 1.00 34 1.95 . ‘!
12 1.48 ;
!
i
’ f
o
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TABLE 6.12
Individual Optimum Balking Points (h = 19)

Class ng (Customers)
m
1 18
2 17
3 14
4 14
5 12

The optimal policy and corresponding gain rate for the Erlang 19
model will be estimated based on lower Erlang number models. The next
two sections develop a pattern to the results for the lower Erlang
number models which suggests that this estimation procedure is reason-
able. Erlang 1 through Erlang 8 models will be used for this process.
Furthermore, since the Erlang » service time distribution represents
deterministic service times, a deterministic service time model can be
used as one bound for the Erlang 19 results, while the Erlang 8 results
represent the other bound (the Erlang 19 results lie between these
bounds). Adler and Naor (1969) study a single class model like Model I
but with deterministic service times. Their results are presented here
and then used in Section 6.5 to approximate the results for a multiclass
deterministic service time model.

Let T be the length of a service. ﬂo is the steady state

probability that the system is empty, while ﬂc is the steady state
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probability that the service station is closed. (¢c corresponds to
ﬁn in Model I.) The average rate at which customers depart the

se:vice gt-tion is (1 - Qo)/T. The average rate at which customers
are admitted to the service station is A(l - ¢c). In steady state,

these two rates must be equal; that 1is,
1-8)/T = A1-9) . (6.6)
The social optimum objective function that Adler and Naor use is
g = {RGQ-0)/T}-cL . 6.7)

Frow Equation (6.6), (1 - GO)/T = A(1 - Gc) « )\', the effective arrival

rate. With this substitution, Equation (6.7) becomes

which is Equation (3.2), ignoring the dependence of n. Thus, the model
of Adler and Naor is indeed the same ag Model I except for the deter-
ministic nature of the service times.

Adler and Naor define a state space that can assume nonintegral
values. Recall that, in Model I, the state of the system is the number
of customers present in the system. Adler and Naor define the state of
the system to be the number of whole service times, T, present in the
system. (They assume an arrival can determine how much service time
remains for the customer in service.) Sinze an arrival can find the
service of the customer in service partially completed, the state of
the system can take on nonintegral values.

The balking point for the individual optimum problem is A\ 1,

where A is determined by
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vy = R/(CT) . (6.9)

o‘ The authors show that the forced balking point for the social optimum

problem is given by v, = 1, where Yo satisfies
) vl (v,sP) = v+ Llv sy p) = 0 . (6.10)

dler and Naor also show that

n - _ i=-1
f ¢o(v,p) =1/(1 4] -3 1 {(v(j i)g;! o expl(v - 1)p})

=1
(6.11)

and

L(v,p) = n - ¢0(V.p){ exp{(v - 1)p}(1 + np - vp)

T -1 k-1
S
1-2 k-.l

e aR Rare

- - 3-1
+ (-l)j 1 {jv(j {)%%! (L +np - vp)})} )

(6.12)

where n 1s the greatest integer in v. One way to solve for v, is to

guess a starting value such ag v = . then use a technique like

e e sl den ot

bisection to search for a value of v that satisfies Equation (6.10),

’ where Equations (6.11) and (6.12) are used to evaluate ¢0 and L
, required in Equation (6.10). Once a value of v, is determined, the j
corresponding values of 00 and L can be used in Equation (6.7) to é
determine the maximum gain rate of the model.

To illustrate the above solution technique, let R = 5, C = 2,
A=1l, and T = 1/3 be the parameters of the model. The traffic
intensity, p, 18 given by p = AT = 1/3. Equation (6.9) yields Vg " 7.5.

After a few iterations, bisection yields v, " 5.4167, which implies that
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the forced balking point is 4.4167. Equations (6.11) and (6.12) yield
¢O = 0,6667 and L = 0.4164. Finally, Equation (6.7) gives g = 4.1667.
To 1llustrate the suggested method for bounding the results for
an Erlang 19 model, the deterministic results will be compared with
the results of several Erlang models with low values of h. Since
Adler and Naor assume that an arrival knows how much service time
remains for the customer in service, the most appropriate Erlang model
for comparison with the deterministic model is one in which the
customer knows the service phase of the customer in service. Table
6.13 gives the social optimum gain rate and forced balking points for
gseveral Erlang models of the example. The forced balking point in
Table 6.13 is given in terme of customers in line plus phases of service
left for the customer in service. For instance, 4 cust + 3 ph means
that customers are forced to balk if the state of the system represents
at least four customers in line plus three phases of service remaining
for the customer in service. The deterministic results plus the data
in Table 6.13 indicate that the optimal policy for an Erlang 19 model
is probably a balking point of four customers in line plus several
phases of service left for the customer in service which should yield
a gain rate between 4.146 and 4.1667. The actual phase optimum
solution of the Erlang 19 model provides a gain rate or 4.158 with a

balking point of four customers in line plus eight phases of service

left for the customer in service.
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TABLE 6.13

Results for Several Erlang Models
of the Example

Erlang Number Gain Rate Forced Balking Point
1 4,003 4 cust + 1 ph
2 4.084 4 cust + 1 ph
6 4.139 4 cust + 3 ph
8 4.146 4 cust + 4 ph

6.4 Results for Model IT

For Model II, applied to the Pittsburgh Airport problem, the
service rate of the exponential server is 33.15 aircraft per hour. The
computer program in Appendix D, POLIT, was used to solve for the optimal
policy, the resulting gain rate, and the probability of rejection of an
arrival from each class. The probability of rejection of class m is
found by summing the stcady state probabilities of the system occupying
states n through n:. The results from POLIT are summarized in
Table 6.1?.

Since the first iteration of the policy iteration algorithm
chooses the individual optimum policy (see Table 6.12), its gain rate
can be found ($4905 per hour). Thus, the model indicates that for a
peak traffic hour, the average net benefit to the airline companies

can be increased $1784 by lmplementing the social optimum policy

rather than the individual optimum policy.
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TABLE 6.14

Results for the Exponential (U = 33.15) Model

: Class no Rejection Probability
m
A
f ‘ 1 13 < 0.01
I 2 | 13 < 0.01
- 3 6 < 0.01
E 4 ! 7 < 0.01
- 5 : 3 0.316
Gain Rate ($/Hr) 6689

Although the model assigns no cost to rejecting an aircraft, the
probability of rejection of a clar ' indicates how the optimal policy

would affect the current operatic ., of that class at the airport. It

1s possible to use the model so that a "cost" of rejection is introduced
by setting controls on the maximum probability of rejection allowed for

any class. This approach might consist of a procedure to search various
combinations of class arrival rates using POLIT to evaluate each combin-

ation until a combination is achieved that produces both an acceptable

v galn rate and an acceptable maximum probability of rejection. The

‘ ' schedule used in the Pittsburzu example leads to a rejection probability
of 0,316 for the class that provides 65% of the arrivals at the airport.

The procedure mentioned above could be used to improve on this situatiom.

j
§
¥
i
!
;
1.
i
Y
i
j

Although such use of the model is beyond the scope of this chapter, the

!
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sensitivity of the gain rate and rejection probabilities to deviations
from the optimal policy will be checked to provide some insight into
how this use of the model might proceed.

A straightforward approach to checking the sensitivity of the
model to deviations from the optimal policy 1s to use the policy
evaluation portion of the policy iteration algorithm to evaluate
several policies that are in some sense close to the optimum. The

results for sevaral such policies are given in Table 6.15. For con-

venience, a balking point of 14 rather than 13 1is used for class one.

Since the steady state probability of the system occupying state 14 is

essentially zero, such a change from n, = 13 has little effect on the
1
results of the model. Results like those presented in Toble 6.14 pro-

vide an administrator some capability to trade off a reduction in the

_ N N oo

gain rate for a reduction in the maximum probability of rejection for

any class.

The sensitivity of the results to changes in a single parameter

was tested by determining the range of parameter values for which the

optimal policy remained the same. The service rate, U, was varied both
up and down until the optimal policy changed. The results are given in
Table 6.16. Since the change of n from 14 to 13 is insignificant due

2 y
to the low probability (less than 10-4) of the system occupying state

’ 13 or 14, the optimal policy is stable for i in the range 31+ to 34 . 5
) The location of the change could be found more precisely with additional é
i

evaluations. ;
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TABLE 6.15
Results for the Exponential (u = 33.15)
Model for Several Nonoptimum Policies
i
; Class Balking Rejection ! Balking Rejection
§ Point Probability | Point Probability
] 1 14 < 0.01 14 < 0.01
y .
¢ 2 14 <0.01 14 < 0.01
3 6 0.021 6 0.052
4 7 < 0.01 7 < 0.01
5 4 0.250 5 0.197
Gain 4
Rate 6674 6564
($/Hr) 'j
i«
1
Class  Balking  Rejection |  Balking Rejection ;
. Point Probability . Point Probability '
1 14 < 0.01 A 14 < 0.01 !
2 14 < 0.01 14 < 0.01 é
3 6 0131 7 0.112 }
4 6 0 .31 7 0.112 :
5 6 0.131 7 0.112 ;
Gain
Rate ' 6396 6214
($/8r)
.1
]
' ]
-
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TABLE 6.16

Balking Points and Gain Rate

for Various Values of 1

126

Class 31 32 33.15 34
1 13 13 13 14
2 13 13 14 14
3 5 6 6 6
4 { 7 7 7 8
5 % 3 3 3 4
Gain
Rate 6367 6521 6689 6811
($/dr)

The value of AS' the arrival rate of class five, was also varied

in both directions until the optimal policy changed.

The results are

given in Table 6.17. These results indicate that the ovptimal policy is

stable for XS

in the range 19+ to 27 .

Finally, the value of RS’ the reward for the service of a class

five customer, was varied until the optimal policy changed.

The results

given in Table 6.18 {indicate that the optimal policy is stable for R5

in the range 2307 to 270".

If desired, the stability of the optimal policy to changes in

the other parameters, including the Cm's, can also be tested. The

technique used for y, XS, and RS can be applied to these determinations

as well.

e NP Frp v I
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Balking Points and Gain Rate
for Various Values of A

TABLE 6.17
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s
Class 19 20 20.90 26 27
1 L 13 14 13 13 13
2 13 14 14 14 14
3 6 6 6 6 5
4 7 7 7 7 7
5 4 3 3 3 3
Gain
Rate 6568 6631 6689 6958 7000
($/Hr)
TABLE 6.18
Balking Points and Gain Rate
for Various Values of R
S5
Class 230 240 252 260 270
1 14 14 13 13 13
2 14 14 14 14 14
3 6 6 6 6 6
4 8 7 7 7 7
5 3 3 3 3 4
Gain
Rate ($/Hr) 6375 6518 6689 6803 6956
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6.5 Results for Model III

For Model III, the service time distribution is modeled as an
Erlang (4 = 33.15, h = 19) distribution as developed in Section 6.2.

As this distribution leads to a large number of states (343), the
solution presented in this section is found in a somewhat roundabout
manner. First, Erlang models with U = 33.15 and h = 2, 4, 6, and 8

are solved using Algorithm 5.1. These results are used to hypothesize
the optimal policy for the Erlang 19 wmodel. The gain rate of tﬁe
Erlang 8 model serves as a lower bound for that of tae Erlang 19 model.
Then, the deterministic model of Section 6.3 is used to approximate the
gain rate for a deterministic service time mocel of the Pittsburgh
Airport., This gain rate serves as an upper bound on the gain rate for
the Erlang 19 model.

The results for the lower Erlang number models will be presented
first. Recall that the policy iteration-based algorithm, Algorithm 5.1,
uses as a starting point the results from an Erlang model, the phase
optimum model, in which customers can determine the service phase of
the customer in service. The phase optimum results for Erlang models
with 4 = 33.15 and h = 2, 4, 6, and 8 are given in Table 6.19. As in
Table 6.13, the forced balking points are given in terms of customers
in line plus phases of service left for the customer in service.

Recall that an implementable or linked policy does not require
the administrator to determine the service phase of the customer in
service. The set of candidate forced balking points, found using
Step (c) of Algorithm 5.1, are given in Table 6.20 for each of the

four linked Erlang models considered. Except for class three in the
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R NS 1 Tl e e i G A s

T —e




TABLE 6.19

Phase Optimum Balking Points and Gain Rate
for Several Low Erlang Number Models

129
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i
Class 2 4 6 8
1 I 12 cust + 12 cust + 12 cust + 12 cust +
’ 2 ph 3 ph 5 ph 6 ph
2 : 13 cust + 13 cust + 13 cust + 13 cust +
! 1 ph 1 ph 1 ph 1 ph
3 i 5 cust + 4 cust + 4 cust + 4 cust +
| 1 ph 4 ph 5 ph 7 ph
4 6 cust + 6 cust + 6 cust + 6 cust +
2 ph 2 ph 3 ph 3 ph
5 2 cust + 2 cust + 2 cust + 2 cust +
2 ph 2 ph 3 ph - 4 ph
1
Gain Rate |
2
($/Hr) : 6975 7141 7203 7235
|
TABLE 6.20
Candidate Forced Balking Points for
Several Linked Erlang Models
b
Class 2 4 6 8
1 13,14 13,14 13,14 13,14
2 14 14 14 14
3 6 5,6 5,6 5,6
4 7,8 7,8 7,8 7,8
5 3,4 3,4 3,4 3,4
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Erlang two model, the candidate forced balking points fcr each class
are the same for all four Erlang models. Since the stezdy state
probability of any of those systems occupying 13 or 14 is insignici-
cant, the forced balking point for class one is arbitrarlly chosen to
{ be 14. Policies that use all possible combinations of this reduced
set of candidate balking points were evaluated to determine rhe best

linked policy for each model. The results for tae best pclicy for

=T e e e

each model are given in Table 6.21. For each of these models, several
. policies tied (within roundoff error) for the hest policy. Of these,
the policy with the largest values of the n, was chosen in each case

m
as the best policy, The ties were the result of low probabilities of

the systems occupying states beyond state six. Note that for each

model, the best linked policy found using Algorithm 5.1 achieves a gain
rate that is better than 99.87 of the phase optimum gain rate. Depend-
ing on the use of the model, such a result probably precludes the need
for a more lengthy search for a best policy. Since the same linked
policy provides the best results for all four medels, it seems reason-

able to assume that the policy will also provide the best results for

I e i S e ittt = i T~ B e SR i

the Erlang 19 model. Although the gain rate increases with the Erlang
« number h, the incremental jump decreases with higher values of h.
' Thus, the gain rate of the Erlang eight model, $7223 per hour, provides

a good lower bound on the gain rate of the Erlang 19 model.

T A e o

A deterministic service time model provides the capability to
get an upper bound on the gain rate for the Erlang 19 model; however,
the deterministic model of Adler and Naor (1969) presented in Section
6.3 only applies tu a single class of customers. No attempt is made

here to extend their work. Instead, the single class deterministic
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TABLE 6.21

Best Results for Several Linked Erlang Models

h=2 h=4
Class Balking Rejection Balking Rejection
Point Probability Point Probability
1 14 < 0.01 14 < 0.01
2 14 < 0.01 14 < 0.01
3 6 < 0.01 6 < 0.01
4 8 < 0.01 8 < 0.01
5 3 0.2796 3 0.2557
Gain
Rate ($/Hr) 6963 7129
h = 6 h = 8
Class Balking Rejection Balking Rejection
Point Probability Point Probability
1 14 < 0.01 14 < 0.01
2 14 < 0.01 14 < 0.01
3 6 < 0.01 6 < 0.01
4 8 < 0.01 8 < 0,01
5 3 0.2464 3 0.2414
Gain 7191 7223

Rate ($/Hr)
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model is used to approximate the gain rate for the five class
Pittsburgh Airport model with deterministic service times. The five
clagsses of aircraft are replaced by a single composite class whose
reward for a service is determined by a weighted average of the rewards
for the five classes. The weight for each class can be determined from
Table 6.2 as the proportion of the total arrival rate that is accounted
for by the class. Analogously, the cost per hour of flight for the
composite class is a weighted average of the costs for each of the

five classes. The arrival rate for the composite class is the sum of
the arrival rates of all five classes. Since the services are
deterministic, the service rate is a constant whose value 1is the
estimate of | used in Models II and III. The parameters of the

composite class are given in Table 6.22,

TABLE 6.22

Parameters for the Single Composite Class Model

Parameter Value
R 306.7
C ) 767 .9
A 32.0

u 33.15




The approach used here to estimate the gain rate for a determin-
istic five class model from the deterministic single composite class
: model begins with the comparison of the gain rates found by policy
iteration for several phase optimum Erlang models applied first to the
composite class and then to the full five classes. Calculation of the
ratio of the composite class gain rate to the “ive class gain rate for
Models II and III with h = 2, 4, 6, and 8 provides a means of estimating
the ratio of the composite class deterministic gain rate to the five
¢ class deterministic gain rate. Table 6.23 gives the composite class

gain rate, the five class gain rate, and the ratio of the two rates for

each of the five models mentioned.

TABLE 6.23

Policy Iteration Phase Optimum Results for
Several Models of Both a Single Composite
Class and the Full Five Classes

Model Composite Class Five Classes Ratio
; Gain Rate ($/Hr) Gain Rate ($/Hr) (Composite/Five)
/ 1
! !
11 i 6506 6689 0.973 !
' i
III, h = 2 6800 6975 0.975
. i
hes' 6977 7141 0.977 j
. he6 7042 7203 0.978 i
! |
. hag! 7076 7235 0.978
1
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The deterministic gain rate for the single composite class can
be determined using the results of Adler and Naor presented in Section
6.3. Their method gives ¢0 = 0,1504 and L = 1.890 which, when substi-~
tuted into Equation (6.7) yields g = $7186 per hour. Since Table 6.23
suggesta that 0.97 is a good lower bound on the ratio of the determin-
istic composite class gain rate to the deterministic five class gain
rate, a reasonable upper bound on the deterministic five class gain
rate 1s $7408 per hour. This gain rate serves as an upper bound on
the gain rate of the Erlang 19 model.

The results of this section suggest that the socially optimal
policy for the Erlang 19 model of the Pittsburgh Airport is to implement
the following set of forced balking points: ;; = (14, 14, 6, 8, 3).
This policy should provide a gain rate of somewhere between $7223 and
$7408 per hour to the arrivals during a busy period, while incurring a
rejection probability of less than 0.2414 for class five customers and
less than 0,01 for any other class. Analysis of the sensitivity of
these results to changes in the input parameters could be tested in

the same manner as was done for Model 1I.

6.6 Conclusion

This chapter was devoted to applying the techniques developed
to determine the optimum control policy for the landing queue at the
Pittsburgh Airport. Use was made of Models II and III. The parameters
of the models were determined from published FAA data, the literature,
and direct observation. Computational simplifications were investi~
gated and sensitivity of solutions examined. All indications are that
the simplified analyses are practical and sensitivities easy to

determine.
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A few suggestions for refining the estimates of the model
parameters follow; however, before such refinements are incorporated
into the model, it is suggested that the sensitivity of the model to
the changes be checked. It might be possible to estimate the effect
of the changes based on model sensitivities already determined.

The Rm values can be refined by using an average passenger load
factor for each type of aircraft and thus for each class. Further
improvements in the estimates of the Rm's also affect the estimates of
the Cm's and Am's through expansion of the number of classes. (Each
new class m would require its own estimated Rm’ Cm, and Am.) For
instance, the existing classes can be subdivided based on a range of
values of the passenger load factorf Thus, class one might become
four classes, one for a 0 - 25% loading factor, another for a 26 - 50%
loading, and‘so on. Rm might be improved even further by again
subdividing the classes based on individual aircraft type.

The estimates of the Xm can be improved by basing them on
actual or proposed schedules of arrivals during representative busy
periods rather than yearly statistics.

The estimates of the parameters of the service time distribution
were based on observations made at the Pittsburgh Airport. The
estimates were confirmed by a second set of observations made at the
Washington National Airport. Several additional days of observations
from the Pittsburgh Airport may result in better estimates of the
parameters of the service time distribution.

Several areas for further study were broached in this chapter.
One of these is the difficulty in solving problems involving a large

number of states. Special techniques for solving large sparse systems
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of linear equations could be examined to permit direct solution of
models like the Erlang 19 model. Another problem is the extensicn of
the work of Adler and Naor (1969) to several classes of customers.
While this might require substantial analytical work, it would provide
a means of quickly bounding the results for any Erlang model. The
final problem introduced is perhaps the most interesting. The problem
is to design a schedule of arrivals that achieves an acceptable social
gain rate while keeping the maximum rejection probability for any
class of customers below some upper bound. Models II and III can be
used to solve this problem as a part of a search technique or a new

expanded model can be developed.
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CHAPTER VII

OTHER MODELS

¢ In this chapter, three new models are developed to illustrate
that the semi-Markov approach used for Models I, II, and III can be
adapted to solve other related models. Although all three models have

M classes of customers and an exponential server, the models could

easily be generalized to an Erlang server. The three models considered
are:

1) a nonpreemptive priority service disciplire model,

2) a claasa dependant service rate model, and

3) a nonpreemptive service discipline model with class

dependent service rates. '

7.1 Nonpreemptive Priority Sexvice Discipline Model

The assumptions and structure of this model are those of Model II
except that the service discipline utilizes nonpreemptive priorities
rather than position in line (first come first served) to determine
the order of service. Let class one have highest priority, class two
next highest, and so on. Within a class, the customers are served first
come first served. Since the pricrities are nonpreemptive, the custom-
er in service is allowed to finish regardless of the priority of an

arrival.

The state space for this model is a vector a, where a, is the

class of the customer in service and am is the number of class m

customers in the system. To illustrate the state space consider a
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two class example in state (2,1,2). Thus, there are two customers of
class two and one of class one in the system with ome of the class two
customers in service., If the next event is the completion of a service,
the state becomes (1,1,1) since the class one customer has priority

over the remaining class two customer.

Self-optimizing customers of class m will jein the system if

their expected net benefit for joining is greater than zero. When the

state of the system is'z, the expected net benefit of joining for a

customer of class m is

R, - tm(Z) c_ , (7.1)

where tm(:3 is the time the customer expects tu spend in the system
when he finds the system in state a. A class one arrival must walt for
all class one cusfomers in the system to be served before he can be
served. In addition, he must wait for the customer in service to

finish; however, if the customer in service is a member of class one,

he has already been counted with the class one customers. Eq.ation (7.2)

gives tl(;). 3
i

M E
tl(a) - (al + 1+ 2 Gm a Y/ u R (7.2) g
- m=2 *70 1
A where
1, if a. = nm
4 6 = O
m,a, o, otherwise .

A class two arrival must wailt for all class one and class two customers
in the system to be served before he can be served. If the customer in

gervice is not a member of class one or two, one more customer must be

-
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added to the list of customers who must be served before the class two

arrival. Tnus,
M

t,(@) = (a; +a, + 1+ ) _ sm’a )/u . (7.3)
=3 0

in general, a class m customer must wait for the service of customers
in the system of his ciass and all classes of higher priority. 1Ia
addition, if the customer in service is of lower priority, he has not
been counted and must also be served before the class m arrival. Thus,
m M
e (@ = (f a +1+

i

$ Y/u . (7.4)
fml jemt1 303

Self-optimizing customers of class m will join the system if

S R >
R -t (@C = R = (] a, +1+ §, )C/u = 0 .
moRom L S jemtl 303 T |

) (7.5)
1f n  is such that
8
m
>
R - D Cm/u = 0> R.m - (ns + 1)Cm/u ,
m m

then,

a, = [Ru/c] , (7.6)

m

where the brackets indicate the greatest integer function. g is the

)
individual optimum balking point for class m customers. If an arrival

from class m finds

T oa+i
z a, + ) <n , (7.7
fx1 1 Jemtr 3°% Sy

he joins; otherwise, he balks.

PR
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Since customers are served on the basic ni their priority, the
expected net reward for a customer of class m who is in the system but
not in service is altered by later arriving customers of higher priority
who join the system. This may result in customers desiring to renege.

For instance, if a class m customer joined the system when

T oag*l
a, + § = n -1 ’
fa1 1 Jaml 4°% n

and the next event were the arrival of a higher priority customer, the
class m customer would want to leave the system to cut his expected
loss. Even tliough his time in the system has cost him money, he now
expects to lose more money by remaining in the system. If customers
are allowed to renege, another problem arises. The decision to renege
by a class m customer affects the reneging decision of a lower priority
customer. Thus, the presence or absence of information concerning the
reneging decisions of customers of higher priority can lead a customer
to make different decisions concerning reneging. Several individual
optimum models wouild result from different combinations of assumptions
about
1) whether or not to allow reneging, and
2) 1f reneging is allowed, whether or not to assume that
cach customer knows the decision of every other
customer when he makes his own decision about renegi-g.
Since the social optimum problem is of principal interest, th~se ideas
will not be pursued here.
As will be discussed later, the individual optimum balking point

for each class serves as an upper bound on the social optimum balking

g
1
i4

T — A - - —
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point for the class.l This again provides a bound on the size cof the
state space required for the semi-Markov decision process formuiation
of the social optimum problem. Since self-optimizing customers of
class m can join if as many as n, - 1 customers of their own class
are in the system (this can occurmif no customers of higher priority
are in the system and a class m customer is in service), a bound on
the size of the satate space for the social optlirmum problem is the
number of states such that a s ng > for all m. Let a* be the set of
. o

all such states.

Recall that Section 5.4 points out that the social cptimum

problem of Model II1 (as well as Models I and II) differs from the

gself -optimum problem in that a self-optimizing customer fails to

consider the decrease in expected benefits to later arriving customers
caused by his joining the queue. This external economic effect also

occurs in this model but manifests itself in two ways. Not only does
the self-optimizing customer fail to consider the decreage in benefits
to later arriving customers of lower priority that his joining causes,

but he also fails to comnsider the decrease in benefits to customers of

lower priority who are already in the system (but not in service). The

]
formulation of the social optimum problem considers both forms of the :
i
external economic effect. j

. Consider an administrator who charges a joining customer for the i
s expected costs his joining causes customers present in the system as
1

Since the optimal policy has not been shown to be a control- |
limit policy, n, needs to be redefined as one plus the maximum number
of customers in ® the system for which a class m arrival joips the
queue.,




142

well as for his own expected costs. Since the joining of a lowest
priority (class M) arrival affects no customers already in the system,
the expected system gain in state a due to his joining 1is
M

Ry - (g_l a, +1)C_/u . (7.8)
The joining of a customer from class M-l causes all customers from
class M who are in the queue to remain in the system for an additional
service. Thus, the expected system gain in state a due to a class M-1
customer joining is

M-1
RM -1 7 (E-l 8 +1+ 6M,ao)cM—l/u - (aM - 6M,ao)CM/u *
(7.9)

In general, the expected system gain in state a due to a class m

customer joining is

m M M
R -() a8 +1+)] &6 _)/u-] (a -6, )C/u .
B e 1 jomtl 3030 B Jagey 4 J03p 3

This approach offers a means of internalizing the cost to customers
already in the system and avoids reneging since a customer's expected
costs are known at the time of his arrival and do not change with
later arriving customers,

The other portion of the external economic effect, the decrease
in benefits to later arriving customers of lower priority caused by a
customer joining the system, is internalized as in Models I, II and III

through the social optimum objective function which is

max max gP qP (7.11)

T I TTas Rk e ae amaa® o s e B e ik AR i i
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Again, only stationary Markovian decisiuns are considered and the work
of Der - 71962) is used to limit the search to a nonrandomized rule.
¢z is the steady state probability of the system occupying state a under

a
policy P. QE is the expected gain per unit time the system 1s in state

a when polic; P is in effect. The inclusion of the steady state
probabilities of occupying the various states allows the administrator
to consider the expected decrease in benefits to later arriving
customers of lower priority when deciding whether or not to admit a
customer, Equation (7.1ll) can be rewritten as
max max P B
()

g, = k @A £ @), (7.12)
PeCAC, | PeCNC LA T

d d acav 2Tl

where km(;5 is an indicator that 1is one if a class m arrival is admitted
to the system when the system is in state a and zero if not. fm(Z),
which is the expected system gain in state a if a class m customer is

admitted, is given by Equation (7.10),

m M
£(a) = R -() a, +1+ s YC [u
m m :El:.-li §-m+lj’80 m
M
-2 (a, -8, )c, /v . (7.13)

et 4 389 3

The formulation expressed in Equation (7.12) can be snlved by policy
iteration as will be demonstrated by example. Theorem 4.3 can be

adapted to show that n N n, - No attempt is made here to establish
m m
the form of the optimal policy.

Consider a two class example with y = 4 and A, = 2, R, = 2, and

1 1

2 ™ 1, and C, = 2.5. From Equation (7.6),

C, = 3, Also, X 2

1 2

n8 =2 andn = 1. Thus,
1 )

-4, R

e ———— gy e e
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ak = {(090;0), (191’0)) (290’1)9 (1’2’0)’ (191:1)s (2’1’1)9

(1,2,1), (2,2,1)} .

a* may contain several unnecessary states, states whose steady state
probability will be zero under the optimal policy. Although Equations
(7.7) and (7.13) can be used to eliminate some of these states, for
small examples like this one, it is probably easier to carry them
along.

Since there are two classes, there are four possible actioms,

(0,0), (1,0), (0,1), and (1,1). The transition matrix for each action

follows:
To State
¢0,0,0)(1,1,0)(2,0,1)(1,2,0)(1,1,1)(2,1,1)(1,2,1)(2,2,1)
A (0,0,0) - - - = = - - - W
P(0,0) =
(1,1,0) | 1 0 0 0 0 0 0 0
(2,0,1) | 1 0 0 0 0 0 0 0
(1,2,0) 0 1 0 0 0 0 0 0
From
State (1,1,1) 0 0 1 0 0 0 0 0
(2,1,1) 0 1 0 0 0 0 0 0
(1,2, 0 0 0 0 1 0 0 0
(2,2, 0 (0] 0 1 0 0 0 0 J

A row of dashes indicates that the action cannot be chosen when the
system i3 in the state represented by the row. For action (0,0),

the next transition 1is sure to be the completion of a service.

TR S0 St
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To State

(0,0,0)(1,1,0)(2,0,1(1,2,0)(1,1,1)(2,1,1)(1,2,1)(2,2,1)
f \

(0,0,0) 0 1 0 0 0 0 0 0

P(1,0) =

(1,1,0) [0.67 0 0 0.33 0 0 0 0

(2,0,1) |0.67 0 0 0 0 0,33 0 0

g (1»2)0) = = = - = - = -

‘ From

& State (1,1,1) 0 0 0.67 0 0 0 0.33 0
' (2,1,1) 0 0.67 0 0 0 N 0 0.33

; @,2,1 | - - - - - - - -
(2,2,1) - - - - - - - - ‘

If action (1,0) is chosen in state (0,0,0), the next transitiomn is sure
to be the joining of a class one customer. For the other states in

which action (1,0) may be chosen, the entries are the result of the

service rate competing with the arrival rate.

1
To State é
(0,0,0)(1,1,0)(2,0,1)(1,2,0)(1,1,1) (2,1,1)(1,2,1) (2,2,1) | 3
(
(0,0,0) | O 0 1 0 0 0 0 0 1 ;i
P(O,l) = ‘j
(1,1,0) {0.5 0 0 0 0.5 0 0 0 A
|
(2,0,1) | - - - - - - _ _ i
q
| (1,2,0) | O 0.5 0 0 0 0 0.5 0 ;
From . K
State (1,1,1) - - - - - - - - |
¥ {
j
(2,1,1) | - - = - - - - - - g
i 4
(1,2,1) | - - - - - - - - 1
;
(2,2,1) - - Ld - - - - - }’
\ J [
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To State
(0,0,0)(1,1,0)(2,0,1)(1,2,0)(1,1,1)(2,1,1)(1,2,1)(2,2,1)

| (0,0,0) [0 0.33 0.67 O 0 0 0 0)
i P(1,1) =
: (1,1,0) 0.4 0 0 0.2 0.4 0 0 0
(2,0,1) | - - - - - - - -
4
: (1,2,0) - - - - - - - -
g " From (1,1,1) - - - - - - - -
State
v (2,1,1) | - - - - - - = -
) (1,2,1) - - - - - - - -
(2,2,1) | - - - - - - - -
J
If action (1,1) is chosen in state (1,1,0), the arrival rates for each

class compete with each other as well as with the service rate to
cause the next transitionm.
E;(E), the unconditional expected waiting time in state a under

a
action k, is simply the reciprocal of the transition rate out of state

a under action k. Thus,

2 [ ) 2 ( 1 & ( l 2 ( i

10,0 = | = |, T,0 = [o.5 |, To,1) = 0,25 |, T, = [0.167] . j
0.25 0.167 0.125 0.1 é
0.25 0.167 - - %
0.25 - 0.125 - ;
0.25 0.167 - - g
0.25 0.167 - - ;
0.25 - |- - %
0. 25) - ) L= ) L= )

[P . . e AT e T T T T, b L . st (1<
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The components of all vectors for this example correspond to the states
as listed in a*; that is, component one corresponds to state (0,0,0),
component two corresponds to state (1,1,0), and so on.
If b(0,0) is the matrix of expected rewards for transitions
p between the various states under alternmative (0,0), b(0,0) is the null
matrix since no customers are allowed to join under alternative (0,0).
% The following matrices of expected rewards for transitions under the

other alternatives were found using Equation (7.13).

To State
(0,0,0)(1,1,0)(2,0,1)(1,2,0)(1,1,1)(2,1,1)(1,2,1)(2,2,1)

0,0,00 [ © 1.25 0 0 0 0 0 0 )
b(1,0) =
(1,1,00 | © 0 0 0.5 0 0 0 0
(2,0,1) | © 0 0 0 0 0.5 0 0
From (1,2,0) | - - - - - - - -
State
(L,1,1) | 0 0 0 0 0 0 =-0.125 0
(2,1,1) 0 0 0 0 0 0 0 -0.25 i
(1,2,1) | - - - - - - - - |
(2’2’1) L = - - = = = = = ) \

If the only nonzero entries in a row of b(E) are negative, action k can
be eliminated from consideration when the system is in the state repre-
v sented by the row because action (0,0) will dominate k in the policy

‘ improvement section of the policy iteration algoritim.
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To State
(0,0,0)(1,1,0)(2,0,1)(1,2,0)(1,3,1)(2,1,1)(1,2,1)(2,2,1)
(0,0,0) (0 0 0.375 0 0 0 0 0 )
b(0,1) =
(.,1,0) 0 0 0 0 -0.25 0 0 0
(2,0,1) | - - - - - - - -
1,2,0) 0 0 0 0 0 0 -0.875 0
From
State (l’l,l) - - - - - - - -
(2,131) - - - - - = = -
(1’2’1) - - b - -~ - - -
(2,2,1) | - - - - ~ - - -
J
To State
(0,0,0)(1,1,0)(2,0,1)(1,2,0)(1,1,1)(2,1,1)(1,2,1)(2,2,1)
(0,0,0) [0 1.25 0.375 0 0 0 0 0 )
b(l,l) =
(1,1,0) 0 0 0 0.5 =0.25 0 0 0
(2,0,1) - - - - - - - -
(1,2,0) | - - - - - - - -
From
State (1,1,1) - - - - - - - -
(2,1,1) - - - - - - - -
(1,2,1) = - - - - = - -
(2,2,1) [ - - - - - - - -
/

The components of the vectors of expected rewards per transition

are found from

o YO NERE SN




where a' and a" are used to denote the state before aud after a

tranaition, respectively.

states that are required for the social optimum problem.

example,

r(0,0) = [ -

o O O

, £(1,0) =
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Recall that a* is a set that contains all

(1.25

0.167
0.167

-0.042
-0.083

1, T(0,1) =

(0.375 ), T(1,1) =

-0.125

For this

[ 0.67) .

The components of the vector of expected rewards per unit time in

state a under action k are found from

q_(k)
a

Thus,

E(O’O) = (-

= r_(k)/T_(k)

a

, 4(1,0) =

a

(2.5
1.0

l.o

, q(0,1) =

(1.5 ), a@1,1) =

LIPL RO SR O DA e
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The optimal policy found using Algorithm C.1 (Appendix C) is

P* = [ (1,00 )
(1,0)
(1,0)
(0,0)
(0,0)
(0,0)
(0,0
[ 0,0 ]

which yields g = 1.714 and

g = [0.57) .
0.29
0.00
0.14
0.00
0.00
0.00

| 0.00 |

For this example, it is sccially optimal for class one to dominate the
gsystem to the exclusion of class two. Even if a class two customer

arrives to find an empty system, he is turned away since the adminis~
trator expects the customers to achieve a higher gain rate by leaving

the server idle until a class one customer arrives.

i ot e AT T s
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7.2 Class Dependent Service Rate Model

The agsumptions and structure of this model are the same as for
Model II except each class, m, has its own service rate, um. For an
arrival to be able to compute his expected time in the system, he must
know the number of each class of customers in the system. As illus-
trated in Section 4.3, this requirement together with a first come
first served queue discipline leads to a state space that gives the
class and position of each customer in the system. Thus, the state of
the system is given by o= (ml, m2, ooy mj, ..s), Where m_1 is the
class of the customer in position j. The customer in position one is
in service, the customer in position two is first in line, and so on.

Self-optimizing customers of class m will join the system 1if
their expected net benefit for joining is greater than zero which is
thelr expected net benefit for balking. The expected net benefit of
a class m customer joining when the system is in state m is

M

R - ({ E_l o m)/u} + (L/u))e , (7.14)

where Oi(a) is the number of class 1 customers present in state m.

Since
[+
c,(m) = ) 3§ , (7.15)
i =1 i,mj
where
Gi,mj = |1, if mj = i
0 otherwise,

a class m customer will join the system if m is such that Equation

(7.14) is nonnegative or

e oy
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M —
E . {o, (@) /u,} : R /C_ - L/u ) (7.16)

Since the service rate varies with customer class, Equation (7.16)
cannot be reduced to a balking point in terms of the number in the
system like ns . Rather, for each class m, let Sm be the set of all

m
m such that Equation (7.16) holds. Thus, if the system is in state m,

a gself-optimizing customer of class m joins if EéSm and balks otherwise.

It will be argued later that the set of states in which a class
m customer acting in a socially optimal manner joins the queue is a
subset of the set of states in which he would join if he were acting
in an individually optimal maoner. Thus, if 0m is the set of all
states such that customers of class m who are acting in a socially
optimal manner join the system, then 0m = Sm' A little additional work
must bg done to bound the state space required for the social optimum

M

problem. U Sm may not contain enough states since the states that
m=1
can be reached from states belonging to Sm through the joining of a

class m customer must also be included to bound the social optimum
gtate sgpace. Let Sé contain all states in Sm plus all states that can
be reached from the states of Sm through the joining of a class m
customer. The required state space for the social optimum problem can
then be bounded by %} Sé.

m=1
Again, a self-optimizing customer fails to consider the decrease

in benefits to later arriving customers caused by his joining the queue.

This external economic effect is internalized in the formulation of the
social optimum problem which is

max max Z M ¢P

gy ™ bl _ 4
Pe:Cand P ?ecsncd me 51; = = . (7.17)
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Again, only stationary Markovian policies are considered and the work
of Derman (1962) is used to limit the search to a nonrandomized policy.

Qz is the steady state probability of the system occupying state m

m

under policy P. qz is the expected gain per unit time the system is
m

in state m while policy P is employed. Equation (7.17) can be

rewritten as

M
max max P — —_
Pec nC, BF = PecnC, b 0, 1 k@A L @) ’
s d s d ;If) gt m=]1
1 (7.18)

where km(;b is one if class m is admitted under policy P when the
evsiem is in state m and zero if not. ﬁnﬁa), the expected system gain
ii a class m customer is siuvitted when the system occupies state m,
fcllows from Equation (7..is) as

— M —
£ @ = R - (121_1 lo,m/u} + uple, - (7.19)

Although the state space is quite cumbersome, the seri-Markov formula-

ticn given by Equation (7.18) can be solved by policy iteratiom.
To show that 0m = Sm consider first the quantity ts y where

m
t. =R /C_ =-1/u . S_ contains all states for which the sum of the
sy m m m m

expected service times of all customers in the system is no greater

than tg {see Equation (7.16)}. 1If £, is defined to be the maximum
m m
amount of expected service time in the system for which a social

optimizing cuantomer of class m joins, then, to s ts is amnalogous to
< m B«
n =n. Theorem 4.3 can be adapted to show that t = ts . Since
m m m m
the definition of 0m implies that 0m is the set of all states for which

-
the sum of the expected service times is no greater than to , 0m - Sm'
m
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7.3 Nonpreemptive Priority Service Discipline Model with Class

Dependent Service Rates

This model is a combination of the two previous models. The
assumptions and structure are the same as Model II except that:

a) a nonpreemptive priority service discipline is used, and

b) the mean service rate varies with customer class.
Class one is of highest priority, class two of next highest, and so on.
Within a class, the service discipline is first come first served.
Since the priorities are nonpreemptive, the customer in service is
allowed to finish no matter what tha priority of an arrival. The mean
service rate of class m is um, m=1, ..., M. Since the model has a
nonpreemptive priority service discipline, the state space can again
be a vector<;; whére ao is the class of the customer in service aad am
is the number of class m customers in the system.

Self-optimizing customers of class m will join the systim if
their expected net benefit for joining is greater tuan their expected

net benefit for balking which is zero. For a class m arrival, .ie

expected net benefit of joining when the system is in state a is

Rm - tm(a) Cm ’ (7.20)

where tm(;) is the time the arrival expects to spend in the system if
he joins when it is in state a. Since class one is of highest priority,
a class one arrival must only wait for the customer in service plus any
class one customers already in the system. If a class one customer is
in service, he should not be counted twice. Thus, the time a class one

arrival will expect to spend in the system is given by
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M
- > \
(31 + l,/ul +) Gm,a /um s (7.21)
m=2 0
1 where Gm,ao = |1 if a, = m
0 otherwise

A class two arrival must wait for all class one and class two customers

present in the system plus the customer in service if he has not

already been counted. Thus,

M
+7 & _lu . (7.22)

t,(a) = a /u, + (a, +1)/u
2 1" 2 gw3 ™3y O

2

In general, a class m arrival must wait for all customers of equal or
greater priority who are present in the system plus the customer in

service if he has not already been counted. Thus, for any class m,

m-1 M
t (@ = g-l a fuy + (ay + 1)/u + §-m+163'ao/uj . (7.23)

Self-optimizing customers of class m will join the system if

R - tm(;)cm =R, - {g:i ai/ui + (am + 1)/um ?

J

] M § ‘
| + §.m+1 Gj,ao/uj}cm - 0 . (7.24) ;
. Equation (7.24) can be written as j
1

. m M < ]
(g_l a /u; + §-m+l aj,ao/uj) = R/C -1/ . (7.25) T

Since the mean service rate varies with customer class, Equation (7.25)

cannot be reduced to a balking point in terms of customers in the
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system like L however, it does express a maximum amount of expected
m
service time that can be ahead of a class m arrival and still have him

join the system. ts = R.m/Cm - l/um is the maximum expected time a
class m customer canmwait for his service to begin and still find it
profitable to join the system.

Since the customers are served on the basis of their priority,
the expected net reward for a class m member of the queue (i.e., in the
system but not in service) is altered by the joining of a customer of
higher priority. This again raises the problem of reneging and the
various assumptions that could be made (see Section 7.1).

Let Sln be the set of all states such that Equation (7.25) holds.
It will be argued later that if to is the maximum expected time a
class m arrival can wait for his SZrVice to begin and still find it
socially optimal to join the system, then, to = t:s . Thus, if 0m is

m m
the set of all states that a class m arrival expects to wait no more
o
than to for his service to begin, then, 0m -
m
states Chat are =lements of Sm together with the states that can Le

S . Let S' contain the
m m

reached from the olements of Sm through the joining of a claszs m
M

customer. iJlSQ provides a bound on the state space required for the
social ogti:vm problem.

Self-optimizing customers ignore the decrease in net benefits
that their joining causes customers of lower priority either present
in the system or yet to arrive. Both of these costs will be incorpor-
ated into the formulation of the social optimum problem. The first

will be charged to the arrival and the secund will be accounted for in

the objective function for the sc~ial optimum problem.
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Consider an administrator who charges a joining customer for
the expected costs he causes other customers already in the system as
well as for his own expected costs. Since the joining of a class M
arrival affects no customers present in the system, the expected gain
in state a due to his joining is

M-1
Ry = {(g_l a,/ug) + (ay + /udey . (7.26)

The joirzing of a class M-l customer affects only class M customers who
are in the quaue. Thus, if the system is in state a, the expected
gystem gain due to a class M-1 customer joining is

M=-2

By~ {0

‘1 agfuy + (g + Dy, + SM,aO/uM}CM-l

- (aM -8 (7.27)

M,ao)cn/“M-l .

In general, if the system is in state ;; the expected system gain due

to a class m customer joining is

m-1 M
R_ - {§u1 ai/ui + (am + 1)/um + §-m+l Gj,aoluj}cm
)
- {(a 8 YC. . /u_} . (7.28)
jem#1 1 33 3m

This method of assigning costs avoids reneging since a customer's
expected cost is not changed by later arrivals joining the queue,

The objective function for the social optimum problem is

max max z u

PecC, B T pecncC
8 S

4 . (7.29)
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As before, only nonrandomized, stationary Markovian policies need to
be considered. Qz and qz are, respectively, the steady state probabil-
ity of occupying :tate Zaand the expected gain per unit time in state
a under policy P. The inclusion of the steady state probabilities of
occupying the various states considers . the expected decrease in
benefits to later arriving customers of lower priority when deciding
whether or not to admit a customer. Equation (7.29) can be written as

max - D&y ot % k (@)A_£ (2)

PeC1C, BP Pecgcd:lrb o Fmel @ mm ’

m=1"m (7.30)

where again, km(z) is one if class m is admitted under policy P when
the system is in state a and zero if not. fm(;), the expected system

gain due to a class m customer joining when the system is in state';,

follows from Equation (7.28) as

_ m-1 M
£@ = R - {E.l afu; + (a  + )/u_+ §-m+16j’ao/uj}cm
M
- (a, - 6 )C./u
Jembr 1 d03g 3 m

(7.31)

The solution of the semi-Markov process formulation in Equation (7.30)
by policy iteration will be illustrated by an example. Theorem 4.3
can be adapted to show that, for all m, to 2 tS and thus, 0m S Sm'
Consider the same two class examplemused ?n Section 7.1, but
let each class have its own service rate. The mean service rates and
other parameters for the example are given in Table 7.1. The maximum

expected service time a self-optimizing customer of class one can wait

for his service to begin and still join the system is
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- Rl/cl - l/ul = 0.344, Similarly, £, = 0.208. Thus,

2

s, = {€0,0,0, (1,1,0, (2,0,1)}, and s8] = {(0,0,0), (1,1,0), (2,0,1),

(1,2,0), (2,1,1)}. Also, S, = {(0,0,0), (2,0,1)}, and 5, = {(0,0,0),

(2,0,1), (2,0,2)}. The state space for the social optimum problem is

a subset of {; §! = {(0,0,0), (1,1,0), (2,0,1), (1,2,0), (2,1,1),

m=1
(2,0,2)}.
TABLE 7.1
Parameters for the Example
Class R C A U
m ™ m m
1 2 3 2 3.1
2 1 2.5 4 5.2

The transition matrices for the four possible actions follow:

To State
(0,0,0)(1,1,0)(2,0,1)(1,2,0)(2,1,1)(2,0,2)
(0,0,0) | = - - - - - )
P(0,0) =
(1,1,0) {1 0 0 0 0 0
(2,0,1) | 1 0 0 0 0 0
From
State (1,2,0) 0 1 0] 0 0 0
2,1,1) | 0 1 0 0 0 0
(2,0,2) | O 0 1 0 0 0

Again, a row of dashes indicates the action cannot be chosen when the

system occupies the state represented by the row. For action (0,0),

the next transition is sure to be the completion of a service.

- N . . . y . : v,o.
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To State
(0,0,0)(1,1,0)(2,0,1)(1,2,0)(2,1,1)(2,0,2)

3 (0,0,0) { © 1 0 0 0 0 )

! P(1,0) = '

! (1,1,0) | 0.61 0 0 0.39 0 0

» (2,0,1) | 0.72 0 0 0 0.28 0

B From

? State (1,2,0) - - - - - -

S (2,1,1) | - - - - - -

3 l' (2,0,2) = = - - - =

|

E' ¥ L ‘

; If action (1,0) is chosen in state (0,0,0), the next transitiom is
; sure to be the joining of a class one customer. For other states in
? which the action may be chosen, the entries are the result of

competition between the rate of service for the customer in service

and the arrival rate of class one.

To State
{¢,0,0)(1,1,0)(2,0,1)(1,2,0)(2,1,1)(2,0,2)

(0,0,0) [ 0 0 1 0 0 0 ) 3

P(0,1) = .
(1,1,0) - - - - - -

(2,0,1) | 0.57 0 0 0 0 0.43 i

From "

State (1,2,0) - - - - - - :

(2,1,1) | - - - . _ - |

(2,0,2) | - - - - - - |

!
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To State
(0,0,0)(1,1,0)(2,0,1)(1,2,0)(2,1,1)(2,0,2)

0,0,00 [ 0O 0.33 0.67 0 0 0 )
P(l,1) =
(1:1’0) - - - - - -
(2,0,1) | 0.46 0 0 0 0.18 0.36
From
State (1,2,0) - - - - - -
(2,1,1) | - - - - - -
(2,0,2) | = - - - - -
\ J

If action (1,1) is chosen in state (2,0,1), the class arrival rate of
each class and the service rate of the customer in service compete to
cause the next transition.
?;jﬁ), the unconditional expected waiting time in state a under
a

actionlﬁ, i1s the reciprocal of the transition rate out of state a under

action k. Thus,

T(0,0) = { - ], T(1,0) = (0.5 ), T(0,01) = (0.25], T(1,1) = [0.17).
0.32 0.20 - -
0.19 0.14 0.11 0.09
0.32 - - -
0.19 - - -
0.19) L= ) L~ ) [~ )

The components of all vectors for this example correspond to the

2
states as listed in y Sé.
m=1

i
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3 The matrix of expected rewards for transitions between states
under alternative (0,0), b(0,0), is the null matrix since no customers
may join the system. Equation (7.31) is used to find the entries in

£ the matrices of expected rewards for transitions under the other

alternatives. TFor this example,

% . To State
L (0,0,0)(1,1,0)(2,0,1)(1,2,0)(2,1,1)(2,0,2)
5 0,0,00 (0 1.03 0 0 0 0
. b(1,0) =
(1,1,00 { 0 0 0 0.06 0 0
(2,1,0) | 0 0 0 0 0.46 0
From
State (1,2,0) - - - - - -
(2,1,1) | - - - - - -
(2$0’2) \ = = = - = =)
To State
(0,0,0)(1,1,0)(2.0,1)(1,2,0)(2,1,1)(2,0,2)
(0,0,0) [0 0 0.52 0 0 0 1
b(0,1) =
(1,1,0) | - - - - - -
(2,0,1) | 0 0 0 0 0 0.04
From
2,1,1) | - - - - - -
(2,0,2) L - - - - - - )
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To State
(0,0,00(1,1,0)(2,0,1>(1,2,0)(2,1,1)(2,0,2)

(0,0,0) [ 0 1.03 0.52 0 0 0 )
b(l,1) =
(1,1,0) | ~ - - - - -
(2,0,1) | o 0 0 0 0.46 0.04
From
State (1,2,0) | - - - - - -
(291’1) - - - - - =
(2,0,2) | - - - - - -

The components of r(k), the vector of expected rewards per

transition under action k, are found from

r (k) = L 2 P _ (b_ _ (k) ,
a' a" \J_s' ala" ala"
w=l"m

where a' and a" are, respectively, the state before and after a

transiﬁion. Here,

r(0,0) = ( -, *(1,0) = (1.03}, T(0,1) = (0.52], r(i,1) = 0.69) .
0 0.03 - -
0 0.13 0.02 0.10
0 - - -
0 - - -
L 0) L= ) L= ) L= )

The components of the vector of expected rewards per unit time in

state a under action k are found using

L@ = r_(®/F_® .
a a a
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Hence,
q(0,0) = [ - },'E(l,O) = {2.06), q(0,1) = (2.08), q(1,1) = [4.14) .
0 0.13 - -
0 0.91 0.15 1.06
0 - - -
0 - - -
( 0 ) L= ) (= ) (=)

The optimal policy found using Algorithm C.1 is as follows:

P* = ((1,1)) ,

(0,0)

(0,0)

(0,0)

(0,0)

((0,0))

which vields g = 1.715 and @ = [0.414) .

0.267
0.319
0.0
0.0
0.0 |

For this example, it is socially coptimal for class one and class two

customers tc Jjoin the system only 1f it is empty.

7.4 Conclusion
The models of this chapter require a more complex state space

than Models I, II, and III., The state space for the nonpreemptive
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priority models is tractable as long as the number of classes remains
small. However, the state space for the model of Section 7.2 is
tractable only for extremely small problems.

The thrust of this chapter has been to demonstrate that the
approach used in Models I, II, and III can be extended to other models.
That is, once a state space has been defined that carries the necessary
information for memoryless transitions and allows computation of the
expected net benefit of joining, the social optimum problem can be
formulated as a semi-Markov decision process. Also, the individual
optimum problem can be used to bound the number of states required for
the policy iteration solutica technique. No attempt has been made to

draw any conclusions about the form of the optimal policy.
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CHAPTER VIII
SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FURTHER RESEARCH

In this chapter, the work presented in this paper is summarized
and a few conclusions are drawn about the models that have been
developed. Also, a few potential uses of the models beyond that
presented in Chapter VI are listed. Finally, some suggestions are

offered for further research.

8.1 Summary and Conclusions

The models of this paper are extensions of the model studied by
Naor (1969). Omne of the major contributions of Naor's work was the
suggestion that not every arrival at the service facility would want
to be or be allowed to be served. Naor's work was complemented by
that of Yechiali (1971) who solved a slightly more general problem,
Yechiali's contribution was the formulation of the elementary problem
as a semi-Markov decision process. Some other authors [e.g., Stidham
(1978)] have subsequently proposed that the choice facing an arrival
be the option of joining a system with the cnst structure following
Naor or joining an alternate system. The alternate system might be
either a self-service facility or a system in which the cost structure
is simply a fixed fee for service. This proposal is most appealing
when all customers eventually require service as is the case with
landing aircraft that are in flight. Such an alternate system can
easiiy be incorporated into the models of this paper. (The effect of

the alternate system is to chliange the expected net benefit of balking
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from zero to the expacted net benefit of service in the alternate
system.)

The semi~Mar-kov a»mroach has been used in this paper to extend
the modcel 4§ Naor to several classes of customers, Model II. For
Model II, the optimal policy tor social optimizing customers was shown
to e a vector of forced balking points, ;;. Thus, a class m arrival
joins the system only if he finds the number of customers in the
system to be less than n, . the balking polnt for his clagss. The
optimal poliicy for self-o?timizing customers was also shown to be a
vector cf balking points, ;;. Finally, it was shown that the social
and self-optimum balking points for each class are related by o, : n_
which facilitates solution of the social optimum problem by prov?ding ;
a lLounr. on the required state space. Both a policy iteration and a
linenr programmiag approach were presented as solutions of Model I1I.

The semi-Markov formulation of Model II was generalizzd in
Chavter V to Model III which inccrporates Erlang service times. This
generalization enhances :he uscfulness of the model by providing more
flexibility in representing the distribution of service tiuwes. The
Erla- z problem was solved by employing the method of phases which
replaces a single Erlang h service time with the mathematically
equivalent sum of h independent, idencical’v distributed, exponential
service times. Although this approach enables the policy iteration
and lipear programmin, so.ution techniques of Model II to be applied
to l.odel III, it can lead to an optimal policy that forces the

administrator to identify the various phases of cervice. Since, in

general, the phases are not physical attributes of the system, the
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solution found may not be implementable. A heuristic procedure was
suggested for determining a good solution that does not require the
identification of the phases of service. In addition, a mixed integer
programming formulation was presented that, if solved, would identify
the optimal implementable solution. The set of states required for
the scecial optimum problem was again shown to be a subset of the set
of states required for the individual optimum problem.

In Chapter VI, Models II and III were applied to the landing
queue at the Greater Pittsburgh Internationmal Airport. Data available
from the FAA and other easily accessible sources were used to specify
the required parameters for five classes of customers. Data taken at
the Pittsburgh Airport led to a rather cumbersome Erlang 19 distribu-
tion of service times. This pointed out that Model III can create
difficulties for both the policy iteration and mixed .integer pro-
gramming solution methods by requiring a large number of states,
Although special techniques for solving such large problems exist,
this particular problem was solved by bounding the Erlang 19 results
between the results of an Erlang & model and those of a deterministic
service time model. The Aeterministic service time model used is an
approximate model based on the work of Adler and Naor (1969).

The semi-Markov approach was extended to three new wodels in
Chapter VII to illustrate the versatility of the approach. The
nonpreemptive priority discipline models (one with and one without
class dependent service rates) require a state space that gives the
number of each class of customers in the system together with the

class of the customer in service. This new state space requires more
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states than that of Model II for the same size problem and thus,

will tend to cause more computational] difficulties for both the

policy iteration and linear programming solution technique. The other
model, a first come, first served model with class dependent service
rates, requires a state space that specifies the class of the

customer in every position in the system. This state space compounds
the computational problems even further. For all three models, the
state space required for the social optimum problem is again a subset
of the state space required for the individual optimum problem.

The semi~Markov decision process formulation used in this paper
applies to a broad range of queueing control problems as illustrated
by the variety of models solved in this paper. The semi-Markov
formulation of Models II and III and each of the models in Chapter VII
can be solved using a technique based on policy iteration or linear
programming. The solution technique may have to be tailored to the
problem as was the case with Model III. When a large number of states
is involved, the solution technique may encountct computational prob-
lems; however, special techniques such as the bounding approach of
Chapter VI can often be applied to get useful results even in these
cases.

For all models considered, the social optimum balking point (in
terms of customers or expected service time in the system) for each
class, m, is rn greater than the self-optimum balking point. This
characteristic of the models is useful in implementing the solution
techniques for the social optimum problem since it provides a bound

on the state space required for the social optimum problem. The
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control~limit property of the optimal solution to Model I carries over
to Model II. The form of the optimal solution was not investigated
thoroughly for the other models.

Models II and III can be successfully applied to the problem of
deciding which classes of aircraft to admit to the landing queue of an
airport. The results are useful in planning the schedule of arrivals

at the airport.

8.2 Potential Uses of the Models

In Chapter VI, Models II and III were used to determine an
optimal policy for admitting aircraft .o the landing queue of an
airport. The models can be applied to other similar problems. For
instance, the service might be the unloading of an oil tanker (or a
merchant ship or a truck). The tankers could be broken into classes
based on capacity or type of crude oil. A policy of admitting tankers
to the queue at the port would be sought so that the gain rate of all
tankers acting as a group is maximized.

Systems mcdeled need not have customers that physically line
up. Consider the problem of using a single train or truck fleet to
haul grain from elevators throughout Nebraska to Kansas City., 1In this
problem, the server moves to the customers and the queue is a schedule
of elevators the train is committed to serve. The classes of customers
might be based on elevatcr capacity, locatiom, or type of grain. The
problem remains that of determining a policy of admitting customers to
the queue (list) so that the gain rate of all customers taken as a
whole 1is maximized.

Some problems that cannot be solved directly using Models II

and III can be solved by combining the models with other techniques.
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For instance, Chapter VI suggested combining Model II or III with a
search technique to determine a schedule of arrivals at an airport
which achieves an acceptable gain rate for the custemers while keeping
the probability of rejection for each class below some specified bound.
. A slightly different example is the problem of choosing the
E number of computer terminals allowed to tie into a computer system.
] The classes of customers might be based in type of user account or on
type of service demanded. Choosing the number of terminals allowed
for each class does not directly determine queue size but rather

determines the size of the population of each class of customers. If

the class arrival rates can be determined as a function of class
population, then a search technique could be used in combination with
Model II or III to find a socially good policy for allowing terminals

to tie into a computer system.

Still another similar application is that of choosing the number
of skiers to admit to a ski resort on a holidy or weekend. The
customers might be clagsified by skiing ability which would indicate

which parts of the ski area they would be likely to use. The service

demanded is the use of a ski lift to carry the skier to the tcp of

the slope. Since mest ski areas have more than one lift, class

[T I NNV TS NI S

arrival rates must be determined for each 1lift as a function of
population. Again, a search tehcnique could be combined with HModel
T or III to find socially good policy of admitting skiers to the ski

area.
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8.3 Suggestions for Further Research

The work described in this paper can be carried forward in
several different directions. The heuristic procedure introduced to
provide a good solution to Model ITI assumes that the optimal policy is
a control-limit policy for each class. The assumption is based on the
fact that the expected net benefit for joining decreases as the
number in the system increases. Implementing a policy that is not
a control-limit policy would force a customer to balk when i are in

the system but allow him to join when i + 1 are in the system which

i e

yields the customer a smaller expected net benefit than i. Although

R e

this argument supports the control-limit assumption, a proof of the
control-limit property would lend more credibility to the heuristic
procedure.

% The expected net benefit of joining for customers in the first

come, first served, class dependent service rate model of Chapter VII

b decreases as the expected service time ahead of the arrival increases. v

Arguments similar to those used above for Model III can also be used

to support the assumption that the optimal policy for each class

JOr-ORRREDY? TS

establishes a control limit in terms cf the expected service time

ahead of an arrival. The nonpreemptive priority models of Chapter VII
charge an arrival for both hls own expected costs and the increase in

. expected costs he causes customers of lower priority already present

R R AL SR T

in the system. This complicates the definition of a control limit

even further since the expected net benefit of jolning decreases with

s

an increase in the number of customers of lower prtority in the system,

L el

The form of the optimal policy needs to be investigated further for
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each of the three models of Chapter VII. 1In addition, use of the
three models would be facilitated by adapting the program of Appendix
D to handle them.

On a broader scope, additional work should be dome to determine
the range or variety of models to which the semi-Markov approach
applies. Subsets of these models should be sought for which the
soclal optimum state space is contained in the individual optimum
state space. Also, the subsets should be identified for which a
control~limit policy is optimal. Further, the results of the models
of this paper should be compared with rrsults of other similar models
such as those of Balachandran and Schaefer (1975, 1976) that use
expected queue length rather than number of customers in the system
to determine the expected costs of joining.

Some refinements and extensions that have been applied to
Model I can also be applied to Models IT and III. For example, tolls
similar to those used in Model I to implement the socially optimal
policy should be developed for Model II by using Equation (3.25) to
find a toll for each class of customers. Also, the approaches used
by Knudsen (1972) and Yechiali (1972) to extend single class models
to include multiple servers could be tried on the multiclass wodels
as well.

Finally, the work presented in this paper has touched sgeveral
other interesting problems that should be investigated. Qne such
problem is the expansion of the determiniscic service time model of
Adler and Naor (1969) to several classes of customers. Another is

the development of a model in which the administrator can control

-
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customer arrival rates through population size rather than queue size.
One final problem is the use of objective functions other than the
individual and sccial optimum ones used in this paper. One such
objective function used by Naor (1969) assumes that the adminigtrator
is trying to maximize the sum of the tolls he collects from joining
customers.

Certainly, many other areas for further research exist.
However, these few are listed to give the researcher some idea as

to where he might start.
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APPENDIX A

GLOSSARY OF NOTATION

This glossary defines notation used throughout this dissertation.

Mathematical symbols and operators, such as the greatest integer
function [m], are not included. Also missing is some notation that
is used only locally for one idea or development. The symbols are
listed in alphabetical order with Greek symbols appearing at the end
of the list for their English equivalent; for example, p is listed at
the end of the r's,

a (a

0 210 o

emptive priority models, where a0 is the class

of the customer in service and am is the number

aM), state space for the nonpre-

of class m customers in the system
B Large numerical value required to develop the

either/or constraints in the mixed integer

program

bij(E) Expected reward for a transition from state i
to 3 when action k is chosen

c Cost per unit time in the system for customers
in a single class problem

Ccl Class of control-limit policies

Cd Class of nonrandomized policies

Cdc% Class of deterministic control-limit policies

Cm Cost per unit time in the system for customers

of class m
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Class of stationary Markovian policies
Class of all policies

Policy chosen in iteration h of the policy
iteration altorithm

Stationary probability that action k is
chosen when the system is in state i
Stationary probability that action k is
chosen under policy P wnen the system is in

state i
Probability that action k is chosen under

policy P at time m given history Hm_1 and
present state nm

Decision made by the nth arrival (An = ()

if balk, 1 if join)

Number of customers in the system at the
instant of the nt:h arrival

Expected net reward to a joining customer of
class m if i customers are in the system
Expected n2t benefit rate or gain rate of the

system

Expected gain rate using the formulation given

by Naor (1969)

Expected gain rate of the system under policy P

Expected gain rate using the formulation which

delivers the reward when a customer joins the

system but distributes the charges for time in

the system throughout the customer's stay
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Expected gain rate using the formulation given
by Yechiali (1971)

Erlang number

History of the process through arrival m

(k

k ceey kM), a possible actior, where

12
km = 0 if class m balks and 1 1if it joins
Indicator which is zero if class m balks when
the state of the system is i and one if rlass m
jeins when the state is 1

Expected number of customers in the system
Contribution of ciass m to the expected number
of customers in the system

Arrival rate ofAcustomers in the single class
problem

Arrival rate of class m customers

Effective arrival rate of customers in the sing’
class probliem

Effective arrival rate of class m customers
Arrival rate of customers in the single class
problem when the system is in state i

Arrival rate of class m customers when the
system is in state i

Number of classes of customers

(ml, Moy veey M ...), state space which gives

j ’
the position of customers in the system, where

m, indicates the class of the customer occupying

3
position j
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M Service rate of the single server
W Service rate for class m customers in the class
? dependent service rate models
%‘ n (nl, Dyy ooy uM), vector of balking points
21 . E; (nol, noz, «essy n_ ), vector of forced balking
ii points for the social optimum problem
\f ¢
if ‘;; (nsl, nsz, «eey n_ ), vector of balking points
ET for the individual optimum problem
;: * ng Largest component of ;;
%E‘ 0m Set of states for which a social optimizing
;f arrival from class m joins the system
%; P Policy for controlling the system
5? Pij(ib Probability of a transition from state i to j
f‘ under action k
% ¢§ Steady state probability that i customers are
E in the system under policy P
Q Fixed payment to an arrival who does not join
the system
q Amount paid per customer in the system to an
arrival who does not join the system
qi(f) Expected net reward per unit time in state i
under action k 0
R Reward for service of a customer in the single i
class problem i
ri(f) Expected reward per occupancy of state i under

action E
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Reward for service of a member of class m
Remaining service time for the customer in
service

A/u, the traffic intensity

Class of stationary control-limit policies of
infinite order

Class of stationary control-limit policies of
order k

Set. of states for which a self-optimizing arrival
from class m joins the system

State space required for class m in the
individual optimum problem

Number of customers of class m present in state m
Length of a service for the deterministic model
Transition rate out of state i

Expected time in the system for a class m
arrival who finds the system in state a

Maximum amount of expected service time ahead of
a social optimizing class m customer for which
he will join the system

Maximum amount of expected service time ahead of
a self-optimizing class m customer for which he
will join the system

Vector of unconditioral expected waiting times

under action k

e
¥
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yi(?)

z, (k)

Unconditional expected waitirg t’ v =0 %o 1
under action k

Expected holding time in state i under action k
given the next transition is to state j
Relative value of the systam starting in state i
Continuous variable representing the forced
balking point for the single class social
optimum problem

Continuous variable representing the balking
point for the single class self-optimum problem
Cost per unit time of operating the system in
state 1

Qiffi(i), decision variable in the linear
programming formulation of a semi-Markov
decision process

Binary variable that indicates whether or not
action k is chosen when i customers are inm the
system (used in the mixed integer programming

formulation of the Erlang service time problem)
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APPENDIX B

PROOFS OF SOME ASSERTIONS ABOUT MODEL I

Naor (1969) states some properties of Model I but does not

1)

2)

3)

provide supporting proofs. The following three properties are

established in this appendix:

g(n), the socially optimal gain rate is discretely
unimodal in n, the forced balking point.
v incraases with Vo where v, = RU/C and v, and

v, are related by Equation (3.5).

<

v, = Vg where again \A and v, are related by

Equation (3.5).

Proof of Property One

Property (1) is important becau~e it guarantees

optimum is a global optimum.

Theorem B.1l: g(n) is discretely unimodal in n.

Proof: Define Ag(n) to be g(n) - g(n - 1). Since

R = C/u, g(l) = 0. This together with g(0) = 0
implies that 4Ag(1) 2 0. Thus, to establish the
theorem, it is sufficient to show that if Ag(n) < 0,
then Ag(n + 1) < 0. Equation (3.3) is provided below

for convenience.

bg(n) = AR{1 - p"(1 - p)/(1 - p**]y}

-clp/@ - p) - (n + 1™ 1 - o™y

that a local
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Use of Equation (3.3) for g(n) and g(n - 1) yields

sy = ALeP (L - 0/ = o - %L - P /(- AV

n+l/(1 n+l)}

- c{np®/(1 - p™) - (a + L)p -p

- a1 - A - ™A - T

- cpMn@l -p) ~p + p“*l}/{(l -oha - o“+l)}

(B.1)

Similarly,
n+l n+2) }

fg(n + 1) = ARPQA - /(A - ¥ -

2

™ r A -p) -0+ ™Y

(- o"Nha - Rk S (B.2)

With the addition and subtraction of

n+2

Cozn+2/{(1 - p“+1)(1 -p O

Equation (B.2) can be written ~8
pga + 1) = Oreta - mF - e - o)

n+l n+2) }

+ ™2 - o®*2y/11 - o

(1 -p

2

+ {=Cp” (L -p) +Cp

n+2

(a-o™ha - o™y . (B.3)

Multiplication of Equation (B.3) by

o1 - g™ - o™ /o - pH A - o))

yields

b 19V
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sgn + 1) = (OR" 1 - % - e - o
+ Cpn+1 - Cp2“+l)/{(1 - (1 - pn+l)})
x {p@- p™/@ - 0™}
+ o™l - (™t - 1y
{@-e"ha-Hr . 6w
'
Equation (B.4) can be written as
. bg(n + 1) = Ag(m)p(l - o™/ (L - ™%
\ - o™ - o/ - o™ L 3s)
k For p > 0, p(L - p™/(1 - o™ > 0
and Co™1(1 - 0)/(1 - o™*2) > 0. Thus, if Ag(n) S 0,
Equation (B.5) yields Ag(n + 1) < 0 and establishes
the theorem.
3 )
B.2 Proof of Property Two ]
Vg and v, are continuous variables that satisfy the equalities ' j
in the formulas that define n and s respectively. Naor (1969’ ;
shows that ng : [vs], where the brackets denote the greatest integer 1
in vs. If Property (2) holds, that is, if Vg increases as v increases, E
then n, = [vo] specifizs the integer that satisfies Equation (3.4) and %
is thus, the halking point for the social optimum problem. 3
One relationship (given by Naor) that is used in the proof of j
Property () 1is v, - 1. This relationship arises from Equation (3.5) \
which is
v
vl -p -o(l-pNA-0" = v .
!
¢
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.
L
b Substitution of vy 1 into Equation (3.5) yields ve = 1. Substitution
g g of v, < 1 yields vy < 1, but this leads co a trivial system since
5 E o, = 0. Since trivial systems are avoided by requiring that R z C/u,
E ' the relationship is validated.
X
é ¢ Theorem B.2: 3dv /v > 0.
‘ ’
Proof: The proof of this theorem is divided up into
proois for each of three cases,
* 1) 0<p<1,
2) p=1,
3 p>1.
Case 1. 0 < p <1,
First, Equation (3.5) can be written as
2 Vo+1 2
ve = v /(=0 =p/(L-p)" +p /(1 -0p)". }
Thus, 3
2 va+l ’
dv /v = 1/ -p) + {1/ -0 7 /ov)
v +1 2 ]
=1/(1-p) +%pp° /(1=-p". (B.6) 1
?
' > |
Since vo = 1 and np < 0, |
i
2 2 -’,
dv /v = 1/(1 -p) +p"ap/(1~p) ;
‘ 2 !
= (1-p+pnp)/A - pF . !
Since (1 - p)2 > 0, it must be shown that
2
1~-p+pinp>0. (B.7)
}
R
3

1 A e L BT LG L ke iy



e s AR B FIEETMETT 0 Ly R [ e —

185

Equation (B.7) can be written as
(o - 1)/(p%kmp) > 1. (5.8)

First, examine Equation (B.8) at the end points of

;' the region; that is, at ¢ = 0 and p = 1.

, ;ﬁg (P - 1)/(0%%p)} = ;fg({(p - l)/pafﬁnp)

which is indeterminate. Application of L'Hospital's

rule yields

lim 2 lim 2
p+0({(9 - 1)/p°}/tnp) = a0 (2 = 9)/p

which is undefined (+~). Also,

lim

ool {¢p ~ 15/(p*tnp)} = ;ﬁg {1/(2pfnp + )} = 1,

with the help of L'Hospital's rule. Thus, if

d{(p - 1)/(pzlnp)}/dp <0 for0<p<1l,

PR RN

then, Equation (B.8) holds and the theorem is established
for Case 1, Differentiation yields

2 . 2 1,

d{(p = 1)/(0"tnp)}/dp = {p"ng - (p - 1)(2pfnp + p)}/

(p2tnp) 2
= {pnp(1 - o) +

+ p(np - p + 1)}/(pzznp)2.

Since the denominator is greater than zero, the

numerator must be shown to be less than zero.

For 0 < p <1,

dr e b
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plnp(l - p) <0 .
Also, from the series expansion of %np,

fnp < p - 1.
Thus,

p(fmp - p+1) <p(p~-1-p+1) = 0.
This demonstrates that

a{(p - 1)/(p*np)}dp < 0 for 0 < p < 1

and establishes the theorem for Case 1.

Case 2. p = 1.
Substitution of p = 1 into Equation (3.5) yields an
indeterminate form. Evaluation of the limit as p
approaches ore of Equation (3.5) is somewhat complicated
by the fact ﬁhat vo is a function of p. However, two

applications of L'Hospital's rule yield

;ﬁ‘ v, = <v§+vo)/z . (8.9)
Thus,
;fT v /3v_ = v+ (B.10)

which is greater than zero since v, " 1. This

establishes the theorem for Case 2.

Case 3. p > 1.

From Equation (B.6),
v +1

Bvs/avo = (1l-p+0p ° fap) /(L - 0)2
2 (1 -p+pXapy/a - p)2

O
[N :-v-i‘».vn'iipfﬁﬁ‘ﬁﬂ%
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Since o > 1, mp > (p - 1)/p. Therefore,
v /v > 1/(1 = p) + p%(p - /L - 070}
=1/(1 - p) - p/(1 - p)
= 1. (B.11)

This establishes the theorem for Case 3.

B.3 Proof of Property Three

Since Property (2) gives n, = [vo] and Naor (1969) gives
<
n = Ev ], showing that v Sv also implies that n_ = n_. Theorem 3.1
s s o ] o s
states the equivalence of Yechiali's formulation of Model I to Naor's.
Since Yechiali proved that n N n, Property (3) will be shown by

starting with n, < ng. A more straightforward approach would be to

use Equation (3.5) and again attack the proof in three cases,

1) 0<p<«<1
2) p=1
3 p>1.

<
The proof of Theorem B.2 can be used to show v, = Vg for Cases two and

three. For Case two, Equation (B.9) gives

1im 2 >
ol v, = (vo + vo)/2 = (v° +‘v°)/2 = vy

o >

>
since vo = ], For Case three, Equation (B.ll) gives Bvslavo > 1. This
lim v
p*l s
three. Since Case one apparently does not follow so easily from

> <
result together with =V, from Case two proves Vo = Vg for Case

Theorens B.2, Yechiali's result is used to establish Property (3).

e iTa e e ZW KRR - n
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<
Theorem B.3: v = vs.

o

Proof: Theorem 3.1 establishes that no and n_ in Naor
(1969) are the same as in Yechiali (1971). To prove the
theorem, assume v < v . Sincen = [v ] and n_ = [v ],
s o o) o s s
5 ,
n = ns. This contradicts Yechiali's result and establishes

0

the theorem.

Demonstration of Equation (3.5)

Use of Equation (3.5) is demonstrated on the one class example

p1 v em nf Table 3.1 with A = 1, The other parameters of the model are

R=5, =2, y=3, p=1/3, v = RU/C = 7.5, Substitution of this

resull “w*o Equation (3.5) yields

Qr

v
7.5 = (v (2/3) - (1/3){1 - (1/3) °})/(4/9)

v +1
(2/3)v_ + (1/3) °© = 11/3

v, = 5 yields 3.3347 which is too small, but v, = 6 yields £.0005

which is too large., Since v, lies between 5 and 6, n, = 5 which

agrees with Table 3.1.
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APPENDIX C

INTRODUCTION TO MARKOV DECISION PROCESS

This appendix is a brief introduction to Markov and semi-Markov
decision processes including the use of the policy iteration algorithm.
The reader who desires a more thorough development is referred to

Howard (1971) and Ross (1970).

c.1 Murkov Decision Processes

'The first process considered is a discrete time, finite horizonm,
finite state space, undiscounted, Markov decision process. A Markov
process can occupy any of a number of states. In this paper, the
states usually correspond to the number of customers in the system.
Some mechanism causes the process to jump from one state to another
according to a probability distribution. The jumps or transiticns are
equally spaced in time. The process is Markovian because knowing the
present state of the process is as good as knowing the entire history
of the process when trying to predict the next state. The process is
a decision process because at each transition, an administrator can
choose an action from among a set of actions. The administrator's
choice affects the probability distributlon of the next transitiom.
Since the transitions are equally space” in time, the process is called
a discrete time process. The process has a finite horizon because it
stops at some glven point of [ime in the future. In this paper, a
bound exists for the maximum number of states required for the process;

thus, the process has 2 finite state space. The process is undiscounted

— T
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because it is assumed that a dollar now is worth a dollar at any point
in the future.

Define 9 to be the expected reward for the next transition
given that the system is in state 1. vi(n) is defined to be the
expected reward of operating the system over the last n periods (jumps)
given that the process is in state.i, n periods from the end. vi(n)

can be expressed recursively as:

N .
vy(m) = q + §-1 9P vj(n -1, i=1, ..., N. (C.1)

N is the number of states, Pij is the probability of a tramsition from

state i to j, 9y is the expected reuv:. .” over the next period, and

N

2 Pij vj(n - 1) 1is the expected reward over the last n - 1 periods.
i=1
To convert thieg process to an infinite horizon process, assume that

lim lin

me Vi o= Ly (v, +ng) , (€.2)

where vi is the reward for starting in state i, and g is a single

reward per period or reward rate for the process. Substitution of

Equation (C.2) into (C.l) yields

N
v, +g = «:1i+§-1 Pij vy i=1, ..., N. (C.3)

This system of N equations contains N + 1 unknowns which are g and Vi
for 1 = 1, ..., N.

The number of unknowns in Equation (C.3) needs to be reduced by
one if the system is to be solved. Let v, = W, 4+ z, Substitution into

Equation (C.3) yields

e

et
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N N
w+z+g-q+z P, w +2z P,.,
i i J=1 i 3 j=1 ij

N

Simce ) P, = 1, Equation (C.4) becomes
jer N

N
w,+g = qi+_1..1 Py vip 1=l ., N (C.5)

Since Equatiuvn (C.5) is of the same form as Equation (C.3), the vi's

can be treated as relative values. This allows one of the vi's, say

vy to be set to zero, thereby reducing the number of variables to N.
At this point, it 13 convenient to develop another expression

for g, the gain rate of the system. If P is the matrix of tranmsition

probahilities and P is the vector of steady stete probabilities of

occupying the states of the system, then,
g =3p . (C.6)

Multiplication of the ith gcvation of Equation (C.l) by 01 and

summation of the N equations yield

N N N N N
g-l ¢i g + §-1 “i v, o= §-1 ¢i q + §-1 §-1 Pij v: 01 .
(c.7)

However,

N N § N N

R FRACRC I PR bytu® ot §-1 3Py
utilizing Equation (C.6). Thus, Equation (C.7) becomes

N
g = ] P q (c.8)

DT - T~ -~y
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N
gince ] @, = 1.
fa1 1
The development thus far has just considered the evaluation of

the gain rate of the process. The decisions available to the adminis-
trator have not been considered. If k=1, ..., K indexes the
alternatives available to the administrator and if he wants to maximize
the expected reward of the finite horizon problem, Equation (C.1)

becomes

N
max
v,(a) = U {qi(k) + §-1 Pyy(k) vy(n - 1}, i=1, ..., N.

(c.9)
For the infinite horizon problem, substitution of Equation (C.2) into

Equation (C.9) yields

. N
vy+og = m:f {qi(k) + z P,.(k) v

1 Py Py ()

N
+ (n - 1)g Z
] E

=]

N
- m;x {qi(k) +) P

140 vy + (a - g},
3=1

i= 1, ..., N.
This can be written as
N

max Ay
g =  flq )+ §-1

(k) v, =v,}, i=1, ..., N.

Pyy § 7Yy

(C.10)

v, could be dropped from the right-hand side of Equation {C.10) since

i
it is unaffected by k.
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C.2 Semi-Markov Decision Processes

A discrete time semi-Markov processl differs from a Markov
process in that the transitions do not necessarily take place at evenly

spaced intervals of time. Let hi (m) be the holding time probability

J
mass functionm. hij(m) is the probability of holding m period: in
sr.ate 1 given that the next transition is to state j. Tij = m-lmhij(m)
is the expected holding time in state i given that the next transition
is to state j. ?; - 2-1 Pij.?ij is the unconditional expected waiting

time in state 1{.
For a finite horizon, discrete time, semi<Markov process,

Equation (C.l) becomes

n N
v,(n) « qT,+) ) P,,v,(n=-m)h, (m), 1=1, ..., N.
1 14 fap ey 113 13

(c.11)

As n becomes large, substitution from Equation (C.2) leads to

v, +ng = qi?i + §-1 Pij z-l{vj + (n - m)g} hij(m)
— N —
qT, + §-1 Pij (vj + ag - srij)
-— N —
- qT, + §-1 Pij vy +ng-gt, , i=1, ..., N.

Thus, for an infinite horizon, Equation (C.ll) becomes

N
v, v 8T, - qiTi+§_1Pijv

j° i=1, ..., N. (C.12)

lAll processes considered in the rest of this appendix will be
undiscounted and will have a finite state space.
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4 continuous time semi-Markov process allows a continuous
distribution of holding times. For a finite horizon, Equation (C.1l)

becomes

o Pij J hij(r) vj(t -1T)dt , i =1, ..., N,

1

vi(t) - qiti +
° (C.13)
Continuous variables t and T are used to index time and 9y is the

expected reword per unit time in state i. ;;J becomes an integral,

N
namely, J:hij(r)dT, while Ti remains §-1 Pij Tij . As t becomes
o of
large, substitution from Equation (C.2) (with t replacing n) yields
- N Sy
vt gt~ qT + §-1 Pij(vj + gt - 8Tij)

N
- qiT +§ P vj+8t-8Ti’ 1-1' seny NI

Here, g is the gain per unit time rather than gain per period. Thus,

for an infinite horizon, Equation (C.13) becomes

———

v, + g i=1, ..., N, (C.14)

N

g tET ATt §-1 Py vy
which is the same as Equation (C.12) except for the new definitions of
terms.

If after each transition, an administrator can choose an action
from among a set of actions indeéexed by k, the process becomes a
continuous time, infinite horizon, semi-Markov decision process. The
action chusen affects the transition probability mass function and the

holding t/wa density function. If the administrator wants to maximize

g, the expected reward rate of the process, kEquation (C.1l4) becomes

L Rl AT S R R e - - -

L i et

- .

B e e S i S

ol 8.




198

N
g = "ple o+ VT WH] p v, -V},
3

3
l1=1, ..., N. (C.15)

-l

Equarion (C.15) suggests the following algorithm which can be shown to

converge to the optimal solution for problems like those of this paper:

Algorithm C.1 (Policy Iteratiom Algorithm)
Step 1: Set v, " 0 for all 1. d(0) = 0, where d(h)
is a vector of actions chosen for each scate
for iteration h of the algorithm. Set h = 0,
Step 2: h =h + 1. For each state i, find di(h)’ the
index vf the action that yields

- N
BEX(q, () + {1/T, ()} 0, Py vy v

Step 3: 1If d(h) = d(h - 1), stop.

Step 4: Solve

v. +g7,{d ()} = q {d )T {d W)}

N
+3] P, {d ()}, ,
jap 131 3

1.1' ¢ v ey N,
for g and vy through vN_l(vN = 0). Go to

Step 2.

Algorithm C.1 is the version of policy iteration used in this paper.

c.3 Example Problem

As in Section B.4, the one class example from Tabls 3.1 with

A =1 is used to demonstrate Algorithm C.1l. The remaining parameters
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of the model atre R = 5, ¢ = 2, and 4 = 3. Since n, s ns and

n, = [Ru/c] = 7, a bound on the size of the state space is seven.

The set of possible actions is indexed by k = 0 cv 1 (this indexing

scheme agrees with the body of the paper rather than with Section C.1).

k = 0 if an arrival is rejected, and k = 1 if an arrival is accepted

into the system. To avcid a trivial system, action zero cannot be

chogsen when the state of the system is zero; that is, if the system

empties out, custcmers must be allowed back into it. n, Sy implies

that action one cannot be chosen when the state of the system is seven.
P(0) is the matrix of transition probabilities for alternative

k = 0.

To State

0 1 2 3 4 5 6 7

P(0) = 0 - - - - - - - - 1
1 1 0 0 0 0 0 0 0
2 0 1l 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0
From
4 0 0 0 1 0 0 0 ¢
State
5 0 0 0 0 1 0 0 0
6 0 0 0 0 0 1 Q 0
7 0 0 0 0 0 0 1 0 J

The dashes in a row indicate that the action cannot be selected when
the system is in the state represented by the row. For alternative
zero, the next transition is sure to be the completion of a service.

P(l) is the matrix of transition probabilities for alternative onme.
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To State
0 1l 2 3 4 5 6 7
¢ 3
0 0 1l 0 0 0 0 0 0
P(l) =
1l {0.75 0 0.25 0 0 0 0 0
2 0 0.75 0 0.25 0 0 0 0
3 0 0 0.75 0 0.25 0 0 0
4 0 0 0 0.75 0 0.25 0 0
From
State 5 0 n 0 0 0.75 0 0.25 0
6 0 0 0 0 tf] 0.75 0 0.25
7 - - - - - - - -
\ J

P01(l) = 1 because the next transition is sure to be an arrival if
alternative one is chosen when the state of the system is zero. For
states other than zero, the service rate competes with the arrival rate.
Since the total rate out of a state other than zero is A + U = 4 and
since | provides 3/4 of the total rate and A provides 1/4 of the total,
the probability that the next transition is the completion of a service
is 3/4 while the probability that the next transition is an arrival is
/4.

?;(k) is simply the reciprocal of the transition rate out of

state 1 under action k. Thus,

1) = (<« ) and T = [ 1 ) .

0.33 0.25
0.33 0.25
0.33 0.25
0.33 0.25
0.33 0.25
0.33 0.25
0.33 -

J \ J
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Let b(0) be the matrix of expected rewards for the various
transitions under altermnative zero. b(0) is the null matric because
no customers are allowed to join the system under action zero. bB(1l)
is the matrix of expected rewards for the various transitions under

alternative one.

To State
0 1 2 3 4 5 6 7
b(1) =0f0 4.33 0 0 0 0 0 0 )
1{0 0 3.67 0 0 0 0 0
2(0 0 0 3.00 0 0 0 0
3(0 0 0 0 2.33 0 0 0
From
State 4 {0 0 0 0 0 1.67 0 0
5(0 0 0 0 0 0 1.00 ©
6|0 0 0 0 0 0 0 0.33
7 - -— - - - - - -
P

The entries b (1) are

i1,i+l

by (D = R-@+ Doy .

The components of the vector of expected rewards per transition,

ri(k), are

n

s
ri(k) - § Pij(k) bij(k) .

=0

Here,

.yl
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T = (=) and r(l) = ( 4.333) .
0 0.917
0 0.750
0 0.583
0 C.417
0 0.250
0 0.083
(0 ) (=

The expected rewards per unit time in state i under action k are

@ = /T W .
Thus,
) = =) anc q(1) = [ 4.33)
0 3.67
o 3.00
0 2.33
0 1.67
0 1.00
0 0.33
[ 0 ) L -

The information required for Algorithm C.l is now at hand.

Application of the algorithm proceeds as follows:

JRERFT SR

—— T




Step 1: Vg = vl - ...V

Step 2: h = 1,

am =

O = FH - KB B B B

Step 3: Continue.

Step 4: g = 4,001.

v = (7.8 )
7.50
6.84
5.85
4.56
3.00
1.33
0.00

Step 2: h = 2,

d(2) =

O O O Kr K KB H

Scep 3: Continue.

= 0.

d(oy = 0.
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Step 4: g = 4.003,

v = [7.18)
6.85
6.19
5.23
4.00
2.67
1.33
L 0.00 |

Step 2: h =3
d(3) =

© O O+ KH H B P

Step 3: Stop.

d(3) indicates that n,6 = 5 which agrees with Table 3.1 as does the
optimal value of g. 3ection 4.6 contains another example ¢f policy

iteration and gives some insight into the relationship between da()

and the optimal policy for the individual optimum problem. i
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APPEMDIX D

USER'S GUIDE AND LISTING OF COMrUTER PRCGRAM

Several different computer programs were used in testing the
models developed in Chapters IIT through V. The program that is
presented here was used for many of the tests and was also used as a
starting point for the other programs that were developed. The program
is written in FORTRAN for the WATFIV compilzr on the :BM 370-3033
computer at The Pennsylvania State Univeruity. After the program
and its use are described, more will be said about how the program

was adapted for other uses.

D.1 Introduction to the Prograu

The program is called POLI? to reflect the fact that it
performs policy iteration. As discussed in Appendix C, the particular
type of process this program is designed to solve is a continuous time,
infinite horizon, finite state =nace, undiscounted, semi~Markov
decision process. This program is capable of solving Models I, II,
and III. However, the optimal zolution for Model III, the Erlang
service time model is the phasz oy ** .um solution which cannot always
be implemented.

The program consists of two parts. The first builds the P (k)
matrices, q(k) vectors, and ?Ki) vectors from the input data. The
second part performs policy iteration to sulve for the optimal policy
and maximum gain rate. Other information provided for the optimal

policy is the set of v, 6's and the vector of steady state probabilities

i

of the system occupying the various states, 0.

e
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The MAIN routine reads the input data and prints it for user
verification. MAIN also controls the flow of the program. The sub-
routines are described in the order in which they are called. See
Figure D.1 for a flow diagram of the program.

Subroutine PROB generates a transition matrix, P(k), for each
possible action k. ZM transition matrices are generated since there
are ZM possible actions. The program will handle up to five classes
(M = 5). Since transitions can only be made to the next higher or
lower state, each row of a transition matrix contains only two elements.
The firgt clement is the probability of a transition to the next higher
state while the second is the probability of a transition to the next
lower state. Subroutine PROBl is used by PROB to £fill in the
transition matrices.

Subroutine PROFIT generates the matrices of expected vewards of
a transition, b(k), for each possible action k. Since only transitions
to the next higher state can yield a nonzero expected reward, each row
of the b(k) matrices contains only one element. Thus, the b{k)
matrices are dimensioned and used as vectors.

Subroutine EXPECT first generates the vectors of expected

rewards per transition,';(ﬁ), from
o*
1,0 = ]

j=o

Pij(k) bij( ) .

EXPECT then calculates the vectors of unconditional expected waiting

tines, ?(E). Also, using

EXPECT computes the vectors of expected rewards per unit time, Efi).

3
S
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MAIN

PROB

PROB1

l

PROFIT
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Actions,
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Results

POLIT

B

SIMQ

Stop
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Figure D.1 Flow Diagram of POLIT
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EXPECT prints the code which relates the number of an action tc the
classes that action admits. If the input parameter IFLAG is set to
one, EXPECT prints the condensed matrices P(k) and b(k) along with the
vectors r(k) and q(k).

Subroutine POLIT implements the policy iteration algorithm. It
utilizes subroutine SIMQ from IBM (1970) to solve the system of linear
equations generated by Step (4) of the algorithm. POLIT outputs g, 3}
‘and v for each iteration arnd prints the vector of steady state proba-
bilities,la, for the last iteration (which yields the optimal policy).

In addition, POLIT prints the vector of optimal expected rewards per

unit time. Finally, POLIT uses

nk
8
Pk Pk
8P* - Z ¢i q.i ’
i=0

where P* represents the optimal policy, to again compute g. The
comparison of the two w7alues of g should give the user a feel for the

roundoff error that exists in the solution of his problem.

D.2 Use of the Program

The program irput is dercribed first and then illustrated for
the example described in Appendix C. Output for this problem is given
with the listing of the program.

Card one of the input gives the anumber of classes of customers
in the problem, the number of phases of service (Erlang number, h),
and mean service rate for each phase of service. The user is reminded
that if the overall service rate is j, then the service rate for each
phase of service is hy, The format of this information is 2I5, F10.2.

If the user wants to see the P(k) and b(k) matrices and the v(k) and

ol
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q(k) vectors that are generated, he should also include a 1 in column
25 of this card.

Card two of the input gives the reward for service for each
class of customer. The reward for class one comes first followed by
the reward for class two and so on. The format for the rewards is
8Fl10.2.

Card three of the input lists the cost per unit time in the
system for each class of customer. Again, the costs are input in class
order. The format for the costs is also 8F10.2.

Card four of the input contains the self-optimum balking points,

Lo s for each class m. These are computed from
m

usm = [rRu/c + (b - 1)/2n] .

The seif-optimum balking points are input in class order using a format
of 16I5. The -lasses must be numbered sc that the class with the
largest ng is class one.

Carz five contains the arrival rate of each class of customers.

The arrival rates are input in class order with format 8F10.2.

The input for the one class example of Appendix C follows:

Card Ome
Column 5 10 11-20 25
Input 1 1 3.0 1
Card Two
Column 1-10

Input 5.0




Card Three
Column 1-10
Input 2.0
Card Four
Column 5
Input 7
Card Five
Column 1-10
Input 1.0
The output for this example is given with the listing of the program.
Since each section of output includes descriptive information, the

output will not be described here.

D.3 Other Programs

The arrays of POLIT had to be enlarged to run the Erlang service
time model for the airport example in Chapter VI. The number of states
required for the Erlang 8 model 1s 145, so the dimensions representing
the number of states (50 in the listing) must be at least 145. Also,
since the optimal policy for the Erlang model was not implementable,
POLIT was modified to check policies that could be implemented that
were near the phase optimum policy. The modifications were to provide
for the input of the policies to be tested and to alter subroutine POLIT
so that only the policy evaluation portion of Algorithm C.1l, the
determination of g and v, was performed for each input policy.

Two programs that are on the IBM 370-3033 system at The
Pennsylvania State University were also used. LPFREE [see Ilgen (1978) ]

was used to test the linear programming formulation of Models I and II.
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MPSX [see IBM (1972)] was used to test the mixed integer programming

formulation of Model III.

D.4 Listiggﬁand Qutput

A listing of POLIT and output for the example follow.
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212

ve HASP=ITHE,,,000ee¢s3TART JOB 1501,...K3289646,cee. RO
se O3S II%%%, ... .00e START JOB 1501....K328960€.0u.. RUE
oo HISO=TI*®®, i 0eeeee STANT J03 1501004 K32896UFcacnseRTE
ee HASOD=ITHM®, ., .00 START J0OB 1501.-..K32896“6...-..PU!
e HAS?‘II‘*‘.IOQ'....ST;FT Jas 1501.'..K32896u6.....-PU!

b IR~ Bie BE2 - J00

S:01 DaTI: 06/12/7¢ B ASP SYsTEHN LoG

JUB 7
TTAR,TR
§TL2 WA

3764,7T=0029,R=)5000,5=2380, ‘o'RUE R ! Ad
AIN=TY , PORMS=16 00000025
S EXECU™@D - COND CJDE 00CH

TP /SEITAY / START 79163.111%

= /stT
(4]
»
nr Do
RXRO3.
STEP 74
2P /DAT
P /DAT
08 /¥32
08 /K32

ATFIV =

m\F / STOP 79162,1115 cpy OMIN 00.03SEBC MAIN 8¥ LCS 0X
00000050
DA™AY 0001198¢

S EXEICNTIAr - CONUD CIDE 0000

A / STAPT T9163.1115

A / STCP 791€3.1115 CPu OMIN 00.%2SEC dAIN 280K LCS 0K
89646/ STAPT 79162.1115 .
896Uh,/ STOF 79163.1115 CPU OMIN 00.55s7?C

*s 19-3 (05/26/79==1049)

MAIN PROGRAN
L R L L L L T T X R T e T P e e L T
CLASS ONT 3SHOTLD RAYE LARSEST REWARD/COST, CLASS 2 YEXT LARGEST
4§D SO CN.
NEFINTITICYS
IPLAG - IY.WZ.1, SHORT O/P; IF 1, O/P ILNCLOD®S P,3,R,C MATRICES
LCTLASS = NUMBER CF CLASSES CF CUSTOMIEES
SEWARD(L) - CLASS PERARDS FOF SERVICE
COS™ (L) ~ CLASS TIME cCes?TS
NLIY(L) =~ TORCED CLASS SALKING POINTS ¢« CUSTOMERS IUN SYSTEX
AS OF 12JAN79 ONIY XLIN(1) IS 7S®D
1 - MEAN SERVICE TATR
KPHASE = NIMBER CT FRASES OF SERVICE
FLAMBA(L) = CLASS ARRIVAL PATTES GTVAR STATE ¢ NLIM(L)
i = S™ATE 02 SYSTEM ~ NUMSER OF PHASES OF SERVICT IN THE SYSTEM
d = 1 IF STATY BRXCOMES I ¢ FPHASE APTEP TPANS, 2 IF I=t
(LyI,J) =~ CONDENSED TRANSITION MATRICES
(L,T) - EXPECTED PPQPIT / OCCMPANCY
(L,I) - EXPECT®T FFOFIT / UNIT TINMRE
{
{

30 g

L,I) = TLPFCTED WAITING TIN® IN STATE
V(I) - PTLATIVE VAIUE oP STARTING IN STATE I
G - GAIY BATT - TYPYCTED PROPIT , TINE
ID(I) = PCLICY CHOSEN THIS ITXRATION ,
B(L, I) - VECTORS OF ®XPECTED PPOFIT NP TOPANS FROM I = I+KDPHAST
LIt R I F R P PR I A T R R R PR S R R R L R R R R R P R LR P i T P R TP R TR LIRS
CON¥0Y% LCLASS, REFARD( 50), COST( S0), HLIM{( SC), 0, KPHASE,

1 FLANDA( SO), P( 32, SO, 2), R{ 32, 50),Q( 32, SO), "( 32, SO,

2 Y( S0), 6, I3( S0), B( 32, 50), NSTATES
C".-“..“‘.‘t.“‘“.“-.‘*‘.ﬁ“““.‘..‘.i“‘.‘.‘ii'ﬂ““‘---‘..‘.--‘l
c RTAD LHPUT
ct“..‘i."i“‘-l‘.‘-‘.‘.‘l"ﬂ‘*“‘..Ql“‘.ﬂﬂ“““.ﬁ--‘t*“‘li--t‘t.‘.-

It = §

NaONOGOHONAOGONONONONOONOO0O0O

(RN R X X
se s
Tenae
se e 0




- O O0DARMNE W

- s

12
13
14
15

16
17

18

20

21

22
23

24

27
23
29
30
N
2
33
34
35
16
37
39
39

40
41

42
4]
40

213

1007 = §
READ (I¥, 100) LCLASS, KPBASE, T, IFLAG
100 PORMAT (2IS, F10.2, IS)
RTAD (IX,200) (REWARL(I), L = 1, LCLASS)
200 TORMAT(AP10,2)
READ(I¥, 200) (COST (L),
PAC(IN, 300) (NLIN(L),
300 FORNMAT(16IS)
22AD(IN, 200) (PLAMCA(L), L = 1, LCLASS)
cl‘-‘“‘..““‘.“ﬂ“‘“““.““‘Dl‘.‘....“"-‘."t‘.“i“-‘-““.‘-‘t.
c TCHOCHECK QF INPUT
c“‘..‘.“..'..“.“".“..‘.ii““.‘-O“‘.-..i‘-..-‘-I‘C.“".“-‘t.‘-t
YSITE(TOUT, 400)
400 TORMAT(1H1)
WRITE(IOUT, %00) LCLASS, KPHASE, U
§AC  PORMAT (1HO, 10X, 'THIS QUEOZ CONTROL PRCBLEM HAS',IS, ' CLASSES O
1, '? COSTOMERS. THE MEZAN SERVICY RATE OF'//20X,' THE ERLANG',IS,
2 ' SZRATER IS ', F10.2)
WRITE (00T, 600)
600 FORMAT (180, 10X, 'TYPOT VALUES OF THE PARAMETERS POR EACE CLASS',
1 ' ARE GIVEN IN THE FCLLCAING TABLEI')
WRIT®(IOOT, 730)
700 FORMAT (190, 13X, *'CLASS', 10X, *REWARD', 1SX, 'COST', 16X,
1 INLINY, 18X, 'PLANCAY)
DO S010 L = 1, LCLASS -
5010 YRITE(IOT™, 800) L, BYWARD(L), COST(L),NLIN(L) ,PLANDA (L)

= 1, LCLASS)
= 1, LCLASS)

[ 24

800 FORMAT (1HO, 2X,IS, 9%, F10.2, 10X, F10.2, 12X, IS, 13X, F10.2)
NSTAT® = 1 & <PHASE w NLIN(Y)
[ IR PRI RIS LSRRI IR R IL R IR RIS TR ISR RIELET YL ] L]
c GWNENATE TIANSTTION NATRICES
CRESEFRALIMANPENEREER PRSP VE S AR N RRUR SRS S RS RV LS RISV ER SRS S R AN AN SRR BN
Citt pmen
(o I IA L EL A AT RIS IEL A RSP RN RRL LR IPEI AR 1122 2201
¢ CEINTRATY EXPECTED PROPIT NF NEXT TRANSITION MATRICES
W LI PRI RIS I I 4R 2RI R ERRTI FRE L PETALIEZALI LSRR ISR EL DI LAY 22 ]
CALL PROV™Y
I? (IFLAG.HE.1) GO TC %S047
C‘..ﬁ.il“ﬂ““.*ﬁ‘t‘“““‘.““““."l*“iﬁ.tt‘t““‘*.t'tttt‘l.t-‘l.
¢ onTeNT P oAND B
Comam o Rl ol e sk ol ol o a0 I oM ol o0 a0 a0 e ol 0 o o
LCLP1 = 2 #¢ LCIASS
DN 5045 L = 1, LCIP1
WRITE (IONT, 2100) L
2100 TORMAT (120, 77X, 'P ANC B JATIMICES FOLLOW FOP ACTTCN',IS)
3RITE(ICNT, 2200)
22C7 YARMAT (1HO, 37X, *TRANSITICN PROBABILITIES')
D7 SA30 I = 1, HSTATE
%930 %ITTT (LOUT, 2300) (P(L,I,3), J = 1, 2)
2300 FORNAT (BY10, 6)
JRITT (I07T, 2400)
2100 FORMAT (1HG, 39K, 'EXPTCT®D PESARDS POF TRAUSITION!)
WRIT® (1077, 2300) (B(L,1), I = 1, USTATY)

5045 COWTINTE
c“.-iii“ﬁ“‘.lil..'.‘.“‘“.“‘O‘..‘..-"t.“t"-‘-l-.t‘.l‘“‘l'i“‘-.
< GINTRATY 2APECTED PROPIT/OCCTUPANCY AND PYPYCTED REWARD/™TNE
c“‘-.‘-..‘qt'.‘.‘-‘.“.‘.‘.“““"“-“‘...‘.ﬁ..liﬁ‘il‘.l*..ﬁ-ii.t‘-.'

5047 CAtL EXPICT

IF (IPLAG.NE.1) 50 7C %0K0
C“..-.-".““..‘.“““‘lll-‘.‘-‘..-tt..'t"*'*‘.-‘--ttlti.t““..l-‘.
c ouTPAT 7 AND Q
Ctl.“tﬂI‘.-.‘i--““‘l“."!l.tt.ll‘&t‘.‘il-‘ii!-t‘i.i-‘i.“-"l-i‘.-t‘

0 $059 1, = 1, LCLPY

4 TTT(TONT, 2500) T

2500 FORMAT(1EO, 23X, 'R \ND 3 VECTORS FCLLOW FOR ACTION', I5)

B stmta kel




45
4b
47
48
49
%0
$1
82

53
'
T

56
57

53
59
60
61
62

51
64
6%

66
87
63
89
T

3

-

2 -

73
74
s
76
77
73
79
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I9LTR (1097, 2630)

2600 PORNAT (1RO, 30X, *R(I)")

SRIT® (007, 2700) (B(I,I), I = 1, NSTATE)

2700 PORMAT (8210, 7

VRITE (1007, 1300)

7800 POSNAT (1MO, 32X, *Q(DI) ")

WPITY (00T, 2700) (C(L,T), I = 1, §STATE)

5050 CONTINUE
c“-i-“"‘i‘....‘-““.‘.“.“-“‘l.“-"I.‘..-i‘.“-““l'.‘...‘lll“.
c PYRFORY POLICY ITTRATION
ctm.l“.."“‘."“..“ﬁ.‘.“-““-t..‘--.““'.‘-----‘.‘U“.‘.‘-‘.‘I.l‘

5060 CALL POLIT

STOP
2D

SOBROUTINE PROB

CONNON LCLASS, REIARD( $S0), COST( S0), NLIM( 5O), O, KPHASE,

1 FLANDA( 50), P( 32, SO0, 2), B8( 32, SO), Q( 32, SOy, 7¢( 32, 50,

2 9( %0), 6, ID{ 5, B( 32, 50), ¥STATE
CHSBESRE RN S SR AN SR RENE SRS SRS RSB UL SR USAIRSANSEE RIS SR ISR RSN SRR SRS EN
2 *% LCLASS TRANSITICN MATPICE2S WILL 3E GENWERATED
18T - ICLASS CLASSES TAKIN O AT A TINE
240 - LCLASS CILASSES TAKEN 1 AT A TIME

LAST - LCLASS CLASSES TAKEN LCLASS AT A TINE
NOTE - SO PAR S IS MPBER LIMIT CN LCLASS
T sttty vyt s e P S DV PR AR LR SR RIS R ARSI ISR RS R 22 AR 128 2
CLPY1 = 2 e® LCLASS
D3 10 t = 1, LCLEY
P 10 T = 1, YSTATE
0 103 e 1, 2
10 P(L,I,J) = 0.3
C‘-‘.-‘......““‘-“““-I‘*C‘t‘tllt““.-“‘ﬁ‘.O‘-.““““‘-“-“-*.‘
¢ GEWEZRATE TIANSITICH YATEIX POR LCLASS CLASSES TAKEY 0 AT A TIN®
C“‘.““‘.““‘l““““I‘.“““-....“.-‘.“‘“*““‘-‘*ltiiiil“‘..‘
DN 20 T = 2, YSTATE
J = 2
20 P(1,I,0) = 1.9
c“““‘-““‘-.‘-.t‘.“i“‘-“ﬁ“.“-“‘ﬁ““-l“-t-‘.“‘l.ﬂ“‘Ul.‘t.lﬁ

[+
c
c
c
<
c
c

¢ GENERATY TIANSITION MATRICES POR LCLASS CLASSES TAKEN 1!

c AT A TINT

c.“‘ﬁ‘-““““‘."."“‘t‘-‘.‘.“-‘.'..“‘--l.t“.t““-“"-..‘.“‘I-
L = 1

DO 190 L = 1, LCLASS
TLANDA = FLANDA(L)
LL = LL + 1
199 CALL PRAD1I(IL,TLAMLA)
R L T Pt T T R PR R LR P LR R L PP L A AL DAL DL LA LI RSt A LTy
c GEYERATY TAANSITING MATRICES FNP LCLASS CLASSES TAFEN 2
c AT A TIuZ
L e P Pt P PP R PR L L P DR UL RS P LI L R LIS R A AR L L Lo
I7 (LCLASS.LT.2) G0 =N 1010
LCLM1 = LCTAS3 - 1
Ny 2399 L = 1, LCLY?
upl = L+ 1
o0 200 L1 = L2Y, LCLASS
1L = LL ¢ 1
TLAMDA = FLANDA(L) + PLANDA(LY)
CALL PROB1T(IL, TL\MLA)
200" coNTINnE
CAPEE S S SN NA NN SR A AN C NS E SN S HA N RN E R IE S SN A SRR NA SRS SRS SRS SN
c GENPIATT TANSTTION YATFICES 7OR LCLASS CLASSES TAFEN 1
o AT A TINT
CoRS TP U SR RSN SN A RSN NSRS SR SRR SRS S S PN IS VNN RN I SEAN SNSRI A SSS G aaAA kS

st cnitis et

L e e o i el chnid o




80
81
a2
a3
84
85
86
R7
98
a9

90

91
92
93
94
9%
96
97
99
99
100
101
02
103

104
108
106
107
108
109
110
111
112

113
114

119
116

117
118
i19
120
121
122
123
124
125
126

215

I? (LCLASS.L?.3) GO T¢ 1090

LCL32 = LCLASY - 2

no 300 1 = 9, LCLA2

L?1 = L + 1

D0 300 L1 = L2V, LCLM?

L1271 = L1 ¢ 1

D0 300 L2 = L1P1, LCLASS

LL = LL + 1

TLANDA = TPLAMDA (L) + FLAJNDA(L1) & FLANDA(LY)
CALL PROBT(LL, TLANMIA)

300 cCoNTINO®
o L I T LT L T T Ly R e e A T T L I T L i)
o] GENZRATYE® TRANSITION MATRICES PFOP LCLASS CLASSES TAKEN 4
(o} AT A TINE
L I T Y T T e e L Y L Y YT I L
IP(LCLASS.LT.4) GO TO 1000
LSLY3 = LCLASS - 3
PO 400 L s 1, LCLM3
Le1l = 1 +
no 400 L1
LiP1 = L1
DO 400 L2
L2P1 = 12
DO 400 L3
LL = LU +
"LAMOA = FLAMDA(Y) + FLAMDA(L1) + PLAMTA(L2) + PLAMDA(LYY
CALL PROBI(LL, TLAMIA)
400 couTINue
MM 00 oA a0 a0 0 oo 0 oo a0 R R Rk
c GEZNERATE TRANSITICYN MATRICES FOR LCLASS CLASSES TAKEIN S
¢ AT A TIME., NNTE FOB TRHIS PROGPRAM, MAX VALUE QF LCLASS I3 S.
CHBURINBE BRSSP ARE S SN NS SN SR SR AU NR R RS NS BB EE R RN R ok Rtk o e o
I (LCLAS3.LT. §) GO 7n 1000
TLAMCA = 0,0
0O SO0 L =1, 5
SCY TLAMDA = TLAMDA + PLAMECA(L)
LL = LL + 1
CALL PROBI(LL, TLANCA)
IouT = 6
T* (LCLASS.GT. 3) 9RITE(IONT, 2000)
2000 PORMAT(1HO, 20X, 'OROBLEM HAS MOP® 7THAY S CLASSES. ONLY CLASSESY,
1 ¢ 7?0 S FILL BE 1S20.!)
1000 RETTER
™o

LP1, LOLNM2

1

Lip1, Lcit
1

12p1, LCLASS

4 N *Hh vH -

SIBR0NTINT PRQB1T(LL, TLANDA)
CONMON LCLASS, RE7FARD( 51), COST( S0), WLIM( S0), U, KPHASE,
1 PLAMOA( SOY, P( 32, SO, 2), R( 32, S5O0), Q@( 32, 50), T 32, 30y,
2 Y({ %0y, G, ID( SO), B( 32, SO), NSTA"E
W TP T P D e T P T Y P LY L I P e L e A P R T Y T
C PRN32T PILL3 IN P MATRIX FOR SUERCHTINE PROB
o e N o T e e T P T P P R T T T Y PP
NSM1 = AYTATE - 1
TOTAL = TLANCY + U
PIP = TLASCA / TOTAL
POOUN = 7 / TOTAL
P(LL, 1, 1) = 1,0
DO 40 I = 2, s
?(LL, I, 1) = 2?11P
40 P(LL, T, 2) = 270WH
aeTen
A )




127 STBRONTINE PRQPIT
128 COMYON LCLASS, REWARD{ SQ), COST{ 50), WLIM( SO), O, KPAAS™
1 PLAMCA( S0), 2( 32, SO, 2), R( 32, SOy, Q( 32 %0), T( 32. S0y,
2 v(5M, G, ID(SYH, B( 32, 50, HS?lT!
22T DL S P DL TN P T DR P I Lo T P P L T T P R T TP

c 2 *& LCLASS EXPEIC™ED PROFIT OF TNE NEXT TRANSITION MATRICES
¢ WILL 3F GINERATEL,
c 187 « LCLASS CLASSPES TAKES 0 AT A TINE
: C 2D -~ LCLASS CLASSES TAKEN 1 AT ) TINY
' (o .
; c .
! (~ LAST = LCLASS CLASSES TAKEN LCLASS AT A TINE
' (L ER LI R I ]I LTI IR LTI ES RS PRSYRET R RLTY 2T ]
129 ¥SN1 = ASTATY - KDPHASE
130 LCLPY1 = 2 &% LCLASS
131 on 10 L= 1, LCLPY
132 o0 10 I = 1, HSTATE

133 10 8(L, I) = 0.0
LTI IR I T R T R R e T R P L PP I P P R T P P TP Y

¢ POB LCLASS CLASSES TAKEN O AT A TINE, B = 0,
c
o GENZRATY PROFIT MATEIX POE LCLASS CLASSTS TAKEN 1 AT A TINE,
CHRENNBN R RTESBABE AL RS SH RV NN AR AN RN RN MBS AR P ARSI EASERTR R R RR G SRR R AT W
134 L = 1
135 09 100 L = 1, LCLASS
136 LL = LL + 1
137 TRATE = PLANCA (L)
138 po 50 T = 1, uUsMY
139 Jd = 1 + KPHASE
140 Pl w J -1
141 SO = PLANDA(L) * (WEWARD(L) = *J » COST(L) / U)

U2 50 J3(LL, I) = 3SUY / "PATE
143 100 coNTIVUE
LI T R L T P R P e L L L Y T L T T IS T YL PR PY T L e

< GENZRAT® PROPIT MATRICES FOP LCLASS CLASSES TAFEN 2 AT A TINE
I YT R I P IE R I TR R R T P E P P Y L T e P P P R O e T
144 I? (LCLASS.LT.2) GO TO 1000 -
15 LCLYY1 = LCLASS - 3
146 po 200 L = 1, LCLMN 1
147 el s L o+
148 nn 201 L1 = 121, LCLASS
1ud LL = LL + 1
150 TENTY = PLANMDA(L) + FLAMCA(LY) {
151 PO 1S0 I = 1, NSE?
152 J = I & ¥PUASE *
, 153 *r'=s g -1
‘ 154 SNY & PLANDA(L) * (RC9ARS(L) =~ PJ & COST(L) / M) +
T PLAMDA(LY) * (RERASD(L1) - PJ = COST(LY) / V)
155 152 3(LL, I) = 8¢ / TPATY i
156 207 couTIiuTe i
e T D P TP T L PP T T T b
c GIYIRATYE "ROFI™ MATIICTSE TORP LCTASS CLASSFS TAVIN 3 A4 A TINT 4
¢ LI LT T P P L N P e e Y P R L P e P L Lt P L K
157 I? (LCLASS.LT. 1) A0 TQ 1070 )
1%8 tCLM2 = LCLASS -~ 2 1
159 Do 300 L s 1, LCLM2 1
160 LP1 = L + b
161 DO 300 L1 = L2327, LCI¥1 !
162 1121 = L1 ¢ 1 j
161 20 100 L2 = niPY, LCLASS ;
164 LL = LL + )
185 TOATE = FLAMCA (L) ¢ FLAMDA(LT) + FLANCA(LY) ‘
166 on IS T = 1, usx? :

RN n..u»‘m um‘ ‘*'“ [ ke L it et 'h*"'-féii'{."{r,’.ﬂ it DR



217

. 167 J = T ¢ KPHASY
) 168 Pl e J -1 :
; 169 STM = PLANDA(L) ¢ (REWARD(L) - PJ ® COST(L) / O

: 1 ¢ PLAMCA(L1) & (BEWARD(LY) = PJ ¢ CoST(LY) /O
b 2 + PLAMDA(LZ) v (BREWARD(L2) = PJ % COST(L2) / M)
b 170 250 B(LL, I) = SOM / TRATE

[ 171 300 CONTINNE
3 COHSNUEEEAUBRESEI RSO RIS PR S S RSN AAN SR NN R R AR SRR R RSN E BN R RN S
& [of GENZRATE DTIOPIT MATRICES POR LCLASS CLASSES TAKEN 4 AT A TINE
3 CEESS ARSI ARNPASRBR N EAR B IAR R AR SIS S SN AR A SRR RRE RSN R SAA RS kSO HHY
172 IF (LCLASS.LT. 4) GO TO 1090
173 LCLMI = LCILASS =~ 3
174 DO 800 L = 1, LCLA3
178 Pl = L o+ 1
] 176 DN 40C LY = L21, LCIN2
177 LIPY = 1 & 19
178 DO 400 12 = LIiPY, LCLAUM
179 L1291 = 12 ¢ 1
190 DO 800 L3 = L2P1, LCLASS
181 LL = LL + 1
182 TRATE = PLAMDA(L) + PFLANDA(L1) + PLAMNCA(L2Z) ¢ PLAMDA(LY)
183 DO 350 T ~ 1, NsSu1
184 J = I ¢+ KPHAS®
135 T s g =1
186 ST = FLAMDA(L) * (REWAHD(L) = PJ  COST(L) / 0U)

1 ¢ PLAMDA(LY) & ( REWARD(L1) = FJ * COST(LY) / 7
2 & PLAMDA(L2) # (RESARD(L2) - PJ * COST(L2Y / M
3 # PLAMDA (L3) * (REWARD(L3) - FJ = COST(L3) ,/ )

187 350 B(LL, T) = STM / TRATE

188 400 CONTINTE .
CHES R AN ST RN SRR UARRAN NN RSN PR AR AR RN RS AN R IR S IR R NSRS SRR

¢ GENERATE PROFIT MATRIX PNP 5 CLASSZES TAKEN S AT A TINMS
c NOTE OPPER BOMNYD ON LCLASS IS S.
ctﬁ-tntttht‘ti“‘*l-‘!“ittii‘-t*“itlt‘!t*tﬂt‘tﬂ“i-tltlﬁttttittttttt-‘
189 IF (LCLASS.LT.3) R0 TO 1000
190 LL = L + 8
194 TIATY = 0.0
102 no 430 L= 1, S
193 430 TEATE = TRATY + FLAINDA(L)
194 on S00 T o= 1, MSM1
195 J = I ¢ EKPHASS 1
196 Pl =g~ 1
197 STe = 1,0
198 DN 4S0 L = 1, 8 4
199 450 SUX = SUM + PLAMCA(L) # (REWARD(L) - FJ * COST(L) / U) :
200 SN0 B(LL, I) = SNy / TOATE j
201 1000 B2TNRY
202 YD
;
203 STARCUTINEG PYDECT ;
204 COMMOY LCTASS, REWA3D( 50), COST( SO0y, NLIN( SOV, O, RPHASYE, ]
1 PLAdCY( SO)Y, P( 32, S§°, 2), ®B( 32, S0), Q( 12, SOy, T( 32, 50, i
2 7(5M, G, ID( 5™, B( 32, 57, NSTATE ]
I ct--itit‘t“t-tti‘iit'tﬂ-t‘t“t““t‘t"tﬁ-tttt‘ﬂlﬂitll‘t‘lt.t".lt.iltt K
c °( ,I) » B( ,I) * °( I, 1 " J
Chi‘.t.tt‘.lt‘!‘itlﬂtilitt“ﬁtt-l.‘t‘-iitttttt&lttit‘itlt--tt‘it-l“t‘t-t 1
205 LCLPt = 2 %= LCLASS .
214 NeY1 s HSTATY ~ FOHAST 3
207 00 10 L = 1, LCIDY 4
208 58 10 = = 1, ISTATS :
200 ~(L,I} = 1,0 !
219 G(L,I = 3.9 f
211 10 (L, = 0.0 ;




218

212 DO S0 L = 2, LCLPY
2113 DO 40 T.= 1, 1ISM1
214 40 R(L,I) = P(L,L,1) * B(L,T)
21% 5N  CONTINUE
CHERSERAEAREBNA IR RSN AFERER HE DL EEE WS CRBER AR R R A R R R ARSI TS S S R E R

c GENERATE ™ FOR LCLASS CLASSES TAKEN 0 AT A TINE
COMES YRR N AR IR RARE RS SRR L MR B R TR RS RR RSV SRR RN A ENE R TR BB S SHH 0 S S ©
216 IJyT = 6
217 LL = 1
218 L =0
219 YRIT¥®(T07T,2030) L, L
220 2000 FORMAT (140,204, 'ACTICY',2S,' ADMITS CLASSESY, SIS)
221 DO 60 L = 2, XSTATE®

222 6¢  T(LL, 1) = /0
CHURESBANGRI RN BRI PRSP R AN E SRR N FAS BAE R ARSI LR RS R TR ARB RS ERE AS R R R AN

c GENERATE ™ POR LCLASS CLASSES ~AKZN 1 AT A TINE
T T YT RIS TP LRI TR T L P T TV L P L TR P DR T P L LR Y D e e e 1 1 e

223 DO 100 L = 1, LCLASS
224 LL w LL + 1
225 TAATS = PLANDA(L)
226 WRITE (IONT, 2700) LL, L
227 T(LL, 1) = 1/TRATZ
228 TIATE = TRATY + U
229 DO 70 I = 2, NS%1
230 70  T(LL, T) = 1/TRATE®
231 100 CUNTINNE
0D el o o ool s o0 o 3 ool a0 o0 o o o o ol o 20t o o e ol e R
¢ GENERATY ? POP LCLASS CLASSES TAKZN 2 AT A TINF
c*.“tlttl‘l.*lti‘0#.‘*““““*“--t“ﬁ“ﬂﬁl‘ﬁ!tﬁﬁt#i‘l‘i‘ﬁﬂti‘ﬂi‘i‘h‘l
232 I? (LCLASS.LT.2) GO 70 1000
233 LCLM1 = LCLASS = 1
234 TO 200 L = 1, LCLMY
23% 1Pl = L + 1
236 DO 200 L1 = L21, LCIASS
237 IL = LL ¢+ 1
234 "IATE = PLAMBA(L) + PLANMCA(LT)
239 4RITE(TOUT, 2000 LL, L, L1
200 T{LL, 1) = 1/ TRATE
201 TRATE = TRATE + 0
202 DO 170 I = 2, NsSM1
243 179 T(LL,I) = 1/ TRATE
2u4 200  CoNTINUE
fof 1A RIS T22PR PIR SRR IER ARSI ERE LRSI R TRt 21 R NERE LD T
¢ GENZRATE ™ FNR LCLASS CLASSES ™AKEN 3 AT A "INE
Ciillli"thti.-““‘i“““‘ﬁit“tli‘i"t‘tﬁﬂ‘.‘!“““ttt‘tl‘t‘tt‘titlt k
245 I7 (LCLASS.LT.3) GO TO 1000 i
246 LCLNM2 » LCLASS - 2 ¢
247 %0 300 L = 1, LCLM2 1
248 LPY = L + 1 ¥
249 20 300 L1 = 121, LCLA1 4
250 L1921 = L1 ¢ 1 g
251 DO 390 T2 = L1P1, LCLASS
2%2 LL = LL + 1 d
2583 TIATE = FLANCA(L) ¢ FLAMDA(L1) ¢ PLAACA (L2) ]
254 WRITE (IOUT, 2200) L%, 1, L1, L2 i
255 T(LL,1) = 1/ TPATZ 1
2%6 TRATE = TRATE + 0
257 M 270 T = 2, NSH1 j

258 270 T(LL, I) = 1/ TRATE
25) 300 cONTINNR |
CHNNEINE A AR AN F AR BEERAR SIS EB SN SR NS S LR AL IERRA AR RIS VAR AR S SRR RN S P 0wk Rk .

c GZMERATE ™ PO0RP LCLASS CLASSES TAKEW 4 AT A TIRY
I EITE LY R L T Y R R P P T T e e L T P P R L T
260 I*(LCLASS.LT.4) 40-Tn 1000

o




261
262
263
264
265
266
267
268
269
270
274
272
273

274
27%
276

277
278
279
299
28
282
2813
284
233
236
287

289
289
290
291
292
293
294

295

296
207

B s S Y

219

L2LY3 = LCLASS =~ 3
DO 400 L = 1, LCLM3
21 = L »
DO 400 L1
1171 = L9
DO 400 L2
L2P1 = 12
no 400 L3
LL = LL »
TATE = PLAMBA(L) ¢+ FLAMCA(L1) + PLAMDA(L2) + FLAMDA(LI)
veiT®2(IonT, 2000) LL, L, L', L2, L3

T(LL,1Y = 1/TRATE

fRATT = TRATE + O

P11, lCin2

1

wtpt, Lo
1

12P1, LQlass

e IR 2N JE a8 B

D0 370 I = 2, NSH1
370 T(LL, I) = 1/ TRATR2
409 COvTINNE
e Y T L R T Ty T P S e P PR P PP
c GENTRATE T FOR 5 CULASSES TAFEN S AT A TIN®
c HOTE LCLASS IS BCONWDED BY 5
e L L L L LT L L T R e P P TP TP T TS P P T P T
I? (LCLASS.LT.5) A0 TO 1000
LL = LL ¢+ 1
TRATE = 0.0
DO 430 L =1, 5
430 TIATE = TPATE + FLAMDA(L)
wRIT® (IOU™, 2000) LL, (L, L = i, 5)
T(LL, N = 1/ TRATE
TRATE s TRATE + N
DO 470 I = 2, ¥s¥1
470 T(LL, I) = 1/ TPATE
1000 conrTIune
R L L L Y T Ty L P P T T R T T T
c GINERATY Q POR ALL ROLICIES
CHRMMANEY FANARB IR RS RA IR AR P AR DI ARR VAP RN AR AN S EA RN AT G AR NS AU AR R AR A
20 90 I = 2, NSTATI
1090 Q(1,2) =02 (1,I) » T(1,D)
Do 1200 t = 2, LCLPY
no 1160 I = 1, usMN
1100 Q(L,I) = P(L,I) / ?(L,D)
1200 CONTINUR
RETUPY
%D

STYFCNTINE PCLIT
caMMou LCTass, SEYASD( S0), CAST( S0), NLIM( SO), U, XPHASE,
1 PLAMDA( SOy, 2¢( 32, S5O0, v, R( 32, S50y, o 32, %Q), T( 32, =],
2 7(5M, 6, ID( 59, B( 32, S50), MSTATE
L T T L e T P T e T L P P PR Y
USE POLICY I™2RATICH 70 STND CPTINAL POLICYT - MNDISCOMT2N,
INPINT™T 4YQRTIICW.
AN NILL CONTATY COPPPICIEN™S OF SYSTEIN CPF LINEAR ECTATIONS 1Y
vy, HV(NSTATE=1) ,Ge YOTE V(YSTATY) = Q.0 BUT JTILL COYTAIY
G FOR CONVINITNCE.
BA WILL BC R2HS OQF sysT:En,
LTI T Y P e R T T e e e R P e R T PR Y P PR L Y

DINPYSION A4(2507), EE(30), IDOLC( 50)
C“I..-t.‘.““‘-.'.ﬁ-‘.'*i‘il'*#.“t“ilﬂ’..'ﬁ*“*‘i-i.*i“‘“l"l**!‘l
c DIMENSIONS O¥ A4 ANT BB WUST RS FYACTLY ¥ 8Y ¥ AND ¥ POR SIYO
¢ THEST ARY AUTONATICALLY TAKIN CaRI OF BELCW
(LI RALER TR AL AR AR AR LRSI IR Rl RASIAIERL SIS Rl RE LR b L]

ISR = )

50 10 I = 1, NSTATE

V(I) = 0.0

nnoanno

P N R . | W ST T =, .

Py




T
B A T ) NIRRT Wv 1= e = - - PN p——
i carine S g S err————— e

; !
: 220
i
;
; 392 10 IDOLD (I} = O
N 103 LCLP1 = 2 e% LCLASS
v 30u NSM1 » WSTATE - 1
: 304 I00T = 6
: 305 15 IT®E = ITER + 1
¢ 107 DO 1000 I = 1, NSTAT®
L 308 PAX = 0,0
r 309 LCHOIC = 0
b 310 PO 100 L = 1, LCLPY
: 311 1INt = T - 1
: 312 I71 = I + YPHASE
X 313 I¥ (1.EQ.1) SUY = B(L,I,1) * V(IPM)
%« 314 I?(1.GT. (NSTATE-XPRASE)} GO TC 14
K 31% IT(T.N2.1) SUN = P(L,I,1) * V(IP1) + P(L,I,2) * V(IMT)
b 318 6o 10 19
1 319 18 STM = P{L,T,2) * Y(INM)
: 313 19 IF(T(L,I).BQ.0.0) GC TO 100
3 319 TOTAL = Q{L,I} ¢ (1/T(1,1))* (SU% = V(I))
e C\\tlttﬂt#tﬂ‘t.*“tt"ti“.'i“it‘“O“*.-‘t‘t*t“*ﬂ“ti“ttttt-it**ttttl
E c ADNIT AS MANY CLASSPS AS POSSIBLE IF A TIE
:" ! C‘t#‘til‘t'&‘t.“*‘t‘t““*‘t‘.ﬁ‘vi-‘tt.“t“‘lit“.“‘ii.“‘-lttti"“*‘.t
7 320 IF (TOTAL.GZ.TYAX) GO 1TC 60
3 321 G0 To 100
s 322 60  THAX = TO™AL
323 LCHOIC = L
124 100 CONTINUS
325 17 (LCHOIC. NP. ) GO TOQ 110
326 WHITZ (IOUT, 2900)
327 2070 FOMMAT (180, 20%, 'LCHOIC = 0OY)
324 sTop
329 110 ID(T) = LCHOIZ
C*i“‘t#it.i“tt‘t*‘itt#tt#tittitt‘tit‘tt‘ﬁ!‘l‘.‘i*tt‘tﬁl‘ﬁtt**tttﬂ*ttit-
C SET UP AL AWD BB
Ctﬁtttt#t‘u&tt"‘i'**t.t.tnti‘t!"ra:lnul“itt*t*“i#t#tt*#“t‘ﬁli#ittli*ﬁtt.i‘t
33n 50 120 g = 1,usM1
33 IXT = T + (J~1) * 4STIT2
332 AA(IXYY = 0.0
333 IF(J.EQ. (T=1)) AA(IXJ) = -p(LCHOIC, I, 2)
334 120 I?(J.7™Qe (I+KDPAASEI! AA(LXJ) = =-PILCACIC, T, 1)
335 IXI = T + (I = 1) & HSTATE
31§ AA(IXT) = 1.0
337 LN = T + (NSTATZ = 1) * YSTATE
338 AA(IXNY) = T(rCHOIC,I)
330 B3(I) = S(LCHIIC, I)
340 1000 CONTINUE
141 CALL SIMQ(AA,BB,USTATE,KS)
2 I7(KS.5Q.0) GO TO 230
143 YPTTT (IO, 2100)
Juy 2190 FARMAT(199, 27X, 'SINGULAR SYSTIM')
345 sTop
144 200  SRITE(IOUT, 2200) ITER
w? 2276 °NRAMAT (1RO, 2J%X, 'PISTLIS FOR ITEPATICH ', I5, ' FCLLOWY)
ua 4ETITT(TOUT, 2300) I
3ua 2307 ENRMAT 1140, 23X, *'NICISTCY VYECTOP!) p
350 NRITT(ION™, 2460} (ID(Y}, I = 1, NWSTATR) b
381 2400 PORMAT (1615) [
352 " 100 T o= 1, NSTATT 5
3% 3 1100 Y(I) = 3B (I)
184 5 =2 T(NSTATE)
185 T(ISTA™S) = 3,0
15k SRITIITONT, 2390 4 i
157 2500 TORMAT(IHN, 23K, 'GAIY = ', Fi10.3) k
3549 F9ITT(IONT, 2500) A
159 $ANQ TORXAT(IHD, 29X, 'Y TECTCRY) 4
!
!
1
1




3690
361
162
363
364
365
366
367
3168
369
370

37
372

410
411

221

YRITR(TOU™, 2700) (V(I), I = 1, HSTATE)

2790 FC9MAT(3P17.4)

DO 1200 T = 1, NSTATE
120 IT(ID(I).N2.120LD(I)) GO TO 1500
G0 710 1700
1590 couTINU:
DN 1600 I = 1, NSTAT®
1600 YDOLD(I) = ID(I)
GO0 70 15

1700 IRITT(TOTIT. 2300)

2900 FORMAT (1HO, 23X, 'PCLICY ITIRATICY TERMINATEID')
CEREBESEU AL AL R IR IR LRI ASCR IR BB AL BN R EEB RSB AT ERE R RN RS LB PSR RE
c CONPUTE STZADY STATT? PROBABILITIES
[wd 2R LSRR RSS2 R ERIZIESI TSI B2 2SRRI R R SRS RS2 2 2P 22114 3

0O 3209 I = 1, ¥STATE
LCROIC = ID(I)
00 3120 J = 1, NSM1
IKJ = (I-1) SNSTATE ¢ J
AA(IXT) = 0.0
I7(J.2Q. (T=1)) AA(IXJ) = P(LCROIC, I, 2)
3120 I?(J.PQ. (I+KPHASE)) AA(IXJ) = P(LCHCIC, I, 1)
IR = I ¢ (I-1) * NSTATE
AR (IXI) = AA(IXI) - 1.0
IXV = T & NSTATE
Ad(IXY) = 1.0
88 (1) o 0.0
3200 CO4TINUE
ZB(USTATE) = 1,0
CALL SIMQ(AA,BB,HSTATE,XS)
I*(KS.2Q.0) G3 TG 33D
WP LTE (IOU'T,2130)
sToP
3300 WIV = 0.0
30 3386 T = 1, ¥STATT
LCHOIC = ID(I)
T(I) = Q(LCHOIC,T)

33 (I) = 3B(I) #* T (LCHOIC,I)

3340 DIV = XDIV + PC (D)

X4O0LT = 0.0
0O 3360 T = 1, NSTATE
BR(I) = 3B!I) / ¥NDIV

3360 YXTLT = INMTULT + BB(I) * V(D)
WRITE(IOUT, 3400)

J40C PORMAT (1HO, 20X, °*STEADY? STATT PROEABILITIES')
R 1TR(IOU",2700) (BB(I), I = 1, NSTATE
WRTTE (I007T,3639)

3600 FOONAT(190,20%,'0PTIMAL Q VALUES')

AR LTP (1007,2730) (T(I), I = 1, NSTATE)
IR ITE(TON™,3739)

3700 FORMAT/YF 20X, ' GAIN 2ATY CHICK')
SRTIr (TOU £7I0) XmOLT
ZATOPS
1D

STBEON™INE SINQ (A,B,7,KS)
DINEUSIOY 4(H), B8 (M)
CURR MRS RAARA SR SR AR IR R AR LR ARE B E KRR BRI AR R AR E AR NSRS SRS TSR WAk Rk

(od PUREQS?E

c OBTAIY SOLITION OF 4 5¥™ OF STMOLTANENUS LINEAE EQUATIONS,
[ A¥=uR

c MSAGE

c CATL STIMQ(A,B,N,KM)

c TESCPTIP™ICY OF 2APANEITTES




412
413
414
318§
Ul
417
418
319
420

+21
422
423
324
2%

426
427
429

429
430
431
432
433
434
438
136

137
438
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A - MATRIX OF CORFF, STORED CCLUNNRISE. THESE ARY

DESTROYED I¥ COMPOTATION. SIZ® GV A ™OUST BE EXACTLY ¥ RY X
E- VECTOR QX ORIGINAL BHS FTALUES. THEST APE REPLACED BY SOLY.
LINGT™ OF 3 NNST BT EIACTLY N.

N - NUNBER QF EQUATIONS AXD VARIABLES. X.GT.ONE.

¥S - QUTRUT DIGIT

G POR NORMAL SCLUTICYH

1 YOR SINGILAR SET OF EQUATIONS

YETHOD

YETHOD OF SOLUTICY IS BY ELININATION USIYG LARGEST PIVOTIAL
DIVISOR. ZACR STAGZ OF ELINMINATICN COMSISTS OF INTERCHANGING
POWS WHEN YSCIYSSARY TO AVOID DIVISION BY ZERO OR SHALL
ELEZNENTS.

THE PORWARD SCLUTICHW TC OBTAIN VARIABLE % IS DCYE I

¥ STAGES. THE BACK SOLUTICN FNR THE OTHER VARIABLES IS
CALCOLATEC BY SUCCESSIVE SUBSTITUTIONS. PINAL SOLUTION

YALOES ARE DEVELCPEC I¥ VEZCTOR 8, WITH VAEIABL® 1 IN B(1), =TC.
1P RO PIVOT CAR BE PFCUND EYXCEEDING A TOLEFANCE OF 0.0,

THY MATRIX IS CONSIDERED SINGOULAR AND XS IS SET TO V1. THIS

TOLEZRANCE CAN 3JEF 3ODIFIED BY REPLACING TRF FIPST STATEMENT,
U H AR A ITIRRAIBIA AR BRR SN ISR ARAI RS SR RER A ARSI C RIS B SRA SRS EET SRR S SRE RS

nonoannnannnnnNnOonOOannNnnnn

C“".t‘i‘.‘t‘ii‘.“".tlttt“u"“‘t#‘l‘ti‘t‘ttt.‘ttmtt‘#tlttl‘tl“tttt
C FORTARD SQLUTION
c.“'*.l‘.“tt‘t“‘t‘t“tt"ttt.i‘..tittt“‘ttttttlt.tt‘l.tttt“tt‘ttt‘.

TOL = 0.3

X5 = 0

JI = =y

NO 65 g = 1, N

JY = J + 1

J3 3 JJ + ¥ + 1

BIGA = 0

I = 33 -3

Dy 30N T = 3, %
Cona s AR RNV LBEE B ISR A RRAE AL URBAE AR N LS BSL AR RR LA RAEENBBE S SRLUEBE RRD ARG ER SRS

c SEAECH FOR NAXTIMOM COEFFICIENT IN COLOMN
CHENSEASEtUARBAREBINESF IR IR SR PSR SUR AR RS X BB IR AAR SN LS B RS I SABER SRR AR SRS AR
IJ = IT+I

IY (ABS (BIGA)~ABS (1 (XJ))) 20,30,30
29 21GA= A(1ID)
INiX = I
3e CHUTIANE
R T P L T P L T Yy Ly P T T T R L g
c TEIST POR PIVOT LESS THAN TOLEPANCP (SINGULAR MATPIY)
CHEsB SN R SER AR TNE R IR SR EARARIL B AT HE AR R EENAS IR A AR AFRABANRIASSS AR R ERRENY
IF (ABS (3IGA)=-TOL) 35, 35, 40
35 X5 =

ATTURN
IR IE R e R T T L P R T P P e P TR P PP I Y
c TAi"EZRCRANGS ROUS IT UTWCISTARY

cl“‘tt-t3“““““.“'.!".-“‘“"“...i“i“““’i."l‘l‘tt".""-.
34} It = 3 ¢ % = (J = 2)

I7" = TYAX - J

20 S0 X = 3, 1

I1= I1 « 11

I2 = 21 + 1I*

SAVE = A(IT)

A(ZN = A1)

A(TI2) = 7AVYE
c“.t““‘."l‘."““.‘-"i‘.t“‘--‘..““Q‘““..“‘..!-.“‘itt"“‘..
(o4 DIVIDZ ECUATION BY LEADING COEFYICIENT™
c‘l“‘--.‘.“‘..‘l‘.‘tt“““"“..‘ﬂ““"“‘.".."..-.--.‘i“‘U.‘II.‘

. A{T1) = A(TY) ,/ 3IGA

SATE®E = 3(IMAY)

[P T S, ey

T e e o




223

439 B(INAX) = 3(J)
40 B(J) = SAVE/3IGA
CoB 4SRRI BEREE RERS SNEL VSR VB S SV AR VWSS NNEE PP SN VB R RNDE R ASACH ERED RS
¢ SLIAINATY MZX™ VARIABLE
CHAS0 93800 0REPENRSBRE SRS SV AL SIS SR IS L RESUE LV S LSS SVASER RN SACUS SIS S SR BO e RS
461 I® (3-%) 5%, 70, %%
482 S5 I0S w 1w (J=1)
443 90 €5 IX = JY, ¥
Jul IXJ = IQS + IX
sus It = 3 - IX
1¥:1 D2 60 JX = JY, ¥
847 IXJX = % 8(IX=1) + IX
3u3 33X = IXJX ¢ IT
4%9 60  A(TXIJY) = A{IXJT) - (A (XXJ)&A (I3X))

450 45 3(IX) = B8(1X) - (B(J) * A(IXD))

COSRSINEESBISNEI N SSEB IBRBNCE SURRIVE LIV S NAS IR E LU SN PIRERESEB NS CRN RS WER BN

c BACX SOLUTION

CeeSB 1BV ESASENISH R3S SR VX S ER FEE L VB AU S RER VAR A IECIANIVB NS AN E ESE VR SWE RS

451 79 NY = ¥ «

452 IT=s Y s N

3151 DN 80 3 = 1, ¥NY¢
54 Il = IT=y

uss IS = ¥ «J

4sé IC e v

487 O MY X = 1,3
359 B{(IB) = B(IB) =~ A\ (IA) # 3(IC)
859 INe IA - ¥

469 an IC= IC - 1

461 IRTARYN

462 . ™

STATENENTS T/EICUTIC= 5782

COQPE NSAGT 0BJTCT CODE= 29948 3JYTZS5,AFRAY ARTA=

DIAGHOSTICS NUMBZT2 CP WRBQ1Sas Yy WUMRER OF WARWINGS=

,CONDYLE TINEZa Q.37 SIC,2XETNTION TINE= 0.09 s2c,

~{IS QUEUE CON™ROL PENBL3IN 4AS 1 CLASSZE® OF CUSTOMEPS.

TEE IRLANG i 5ia7ee IS 3.0

$NQ020 BYTES,TNTAL ARYA ATAILABLE=

¢, NUNRED C¥ EYTUNSIC

THY MEAN STPVICE 2ATT OF

| IMDNT TALTES OF TWE PAPANETZRS FOR TACH CLASS APE GIVEYN IN TAP POLLOWING TASLE

CLASS RZAARD cosT HiIx TLAYON
1 Se V0 2.29 7 A
P AND B MATRICES 27L10%W POR ACTION 1
TRAYSITION PIOSABILITIES
Ce? Jed
0.0 1.130000
el 1,7207¢9
Q.2 1.000000
0.2 « 7107200
0.9 .. 20N0N0
2.2 1, 1229¢9
0.9 1.0400000

L et S L e st et W e s B

R R
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, SXPEC™2) RYWABRDS POR TRANSITION
i g.q 2.9 0.0 0.9 0.9 0.0 2.0 0.0

P AND B MATRICES POLLOW POR ACTIONW 2

I TRANSITLON PSORABILITITS
F 1,900000 9.0

0.250000 0.7%0009

: 04250000 9.750009

s 0.25000C n.750000

! 0.250000 H,.7%0007

0.250000 0.7%0000

b 0.250000 9.750000

) 0.0 000

i SYDECTED RE7AIDS FOR TRAYSITION

: $.333333 3.666667 13,000000 2.333334 1.666667 1.000000 0,333334 0.0

ACTION 1 ADNMITS CLASSES 0
ACTION 2 ADMIT3 CLasSsES 1

R AWD Q YECTORS POLLCY FOR ACTION 1

R (I) .-
0-0 000 Dlo O.\) 000 0.0 Ooc 0-0 =

QD)
09 N0 0.0 J.0 Ne0 0.0 Q.0 0.0

R AYD Q VICTORS FOLLOW YC3 ACTION 2

P(Y) .
4,311 C.917 7,750 2.533 0417 0.250 2.0903 0.0
2D
4,333 1,667 3.000 2.3323 1,667 1.000 0,329, 0,0
RESULTS PFOR ITRERATTION "1 POLLOW

DECISICN VECTOR
2 2 2 2 2 2 2 1

GAIN = 4.001

v VECTOR
7.23179 7.50464 6.9U16 5.8519 4.5567 1.0007 1,3336 0.9

RESTULTS POR ITERATION 2 POLLOW

NECISION vucToR
2 2 P3 2 2 1 1 1

e e S E i i ot e Caani T

GAIN = 4,003
v vecTor
T.1747 f.9061 6.1908 5.2252 4.9027 2,6RR8 1.2342 0.0
RESTLTS POP ITESATION 3 roLLow :

DECISTCY vICTOR
2 1 1 1

(&)

]
~
[ V]




7.1767

0.6676

4.3333

4,0027

ACCOnNT: MITAU
DATYE: 78,20/7% LIDENT: ACTTAL TINME, IMCLUDING

USER: ROY 2
DESTINATICN:

GAIN = 4,003

vV VRCTOR
6.A461 6. 1905 5.2262 4.0027

POLICY ITERATION TERNINATED

STEADY STATT PHOBASILITIES
0.22235 2.3742 0.0247 J.0082

OPTIMAL Q VALOES
3.6667 3.0000 2, 3333 1.6667

GAIX RATT CHICX

AAXIMTON TTHE (FEC):

LINES BRINTIO:
AA AXIMTY IRCORDS:

08=21.3 HASP-2.TSG 370,/30373 CARERS 0T2AD:

$970

2.6685

0.0027

0.2

NE™ Q20
2.N SEC SYSTEM TIuW:

1.3342

-0.0000

0.0

(STCY ¢

CARDS PUVMCHED:
70T\l RTCOPDS:

225

0.0

-0.0000

2.0
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